Kleene, Rabin, and Scott are available

Jochen Hoenicke!, Roland Meyer?, and Ernst-Riidiger Olderog® *

! University of Freiburg
email: hoenicke@informatik.uni-freiburg.de

2 LIAFA, Paris Diderot University & CNRS

email: roland.meyer@liafa. jussieu.fr

3 University of Oldenburg
email: olderog@informatik.uni-oldenburg.de

Abstract. We are concerned with the availability of systems, defined as
the ratio between time of correct functioning and uptime. We propose to
model guaranteed availability in terms of regular availability expressions
(rae) and availability automata. We prove that the intersection problem
of rae is undecidable. We establish a Kleene theorem that shows the
equivalence of the formalisms and states precise correspondence of flat
rae and simple availability automata. For these automata, we provide
an extension of the powerset construction for finite automata due to
Rabin and Scott. As a consequence, we can state a complementation
algorithm. This enables us to solve the synthesis problem and to reduce
model checking of availability properties to reachability.

1 Introduction

Traditional approaches to system verification rely on idealistic assumptions, e.g.,
that each component will work perfectly all the time. However, in many appli-
cations such assumptions are unrealistic. Think of a sensor network where some
of the sensors fail and recover. Is then the whole information accumulated by
the network invalid?

Our paper is motivated by the desire to establish correctness properties of
unreliable reactive systems where components may fail for some time, or phrased
positively, are available only for a certain amount of time during an observation
interval. This property is known as (interval) availability. It is often studied in
the context of stochastic systems where one calculates the probability that a
component or system has a certain interval availability but it may also be stud-
ied in the context of timed systems [dSeSG89,RS93,Tri01]. For continuous time
models, availability can be formalised using integrals. Letting sys(t) represent
proper system functionality ({0, 1}-valued) at time ¢, the expression

1 n

—o/ sys(t) dt > k

nJo

* This work was partly supported by the German Research Council (DFG) under the
grant SFB/TR 14 AVACS. The second author was supported by the French ANR
projects Averiss and Veridyc.

This is the author’s version of the work published in CONCUR 2010 —
Concurrency Theory, LNCS 6269, pages 462—477. Springer, 2010. The
orginal publication is available at
www.springerlink.com/index/10.1007/978-3-642-15375-4_32

http://www.springerlink.com/index/10.1007/978-3-642-15375-4_32
http://dx.doi.org/10.1007/978-3-642-15375-4_32

2 Jochen Hoenicke, Roland Meyer, and Ernst-Riidiger Olderog

states that the ratio of accumulated time the system is functioning as desired to
total uptime n is at least k € [0,1]. Thus, during the observation interval [0, n)
the system is available for fraction k of the time.

We discovered that availability can be studied already in the simpler setting
of discrete time, in terms of formal languages and automata-theoretic models.
This is what this paper is about. We express availability as the ratio of letters
from a set A in a word w = ay - - - a,, to the length n of the word. Formula

Y xalar) >k
t=1

S|

states that in word w the letters of the set A are available for at least fraction
k of the time. When modelling, the set A may contain desired system states or
receipt actions of messages. Our contributions are as follows:

1. We introduce (in Section 2) the class of regular availability expressions (rae
for short). We prove that the problem whether the intersection of finitely
many raes denotes the empty language is undecidable. The proof is by re-
duction of the termination problem of Minsky machines.

2. We introduce (in Section 3) awailability automata and establish a Kleene
theorem. It states that the class of languages denoted by flat raes coincides
with the class accepted by simple availability automata. We derive a corre-
spondence between intersections of raes and availability automata.

3. We extend (in Section 4) the powerset construction for finite automata
[RS59]. For a nondeterministic simple availability automaton it computes
an equivalent deterministic version. As a consequence, we derive a comple-
mentation algorithm for simple automata that solves the synthesis problem
and reduces model checking of availability properties to reachability.

2 Regular availability expression

We define availability for finite words w € X* over an alphabet Y. We denote by
|w] the length of the word. For A C X' we denote by 74 (w) the projection of w
to the alphabet A, i.e., the word that is derived from w by removing all letters
that are not in A. This notation allows for a concise definition of availability
that avoids division by zero in case w = ¢:

'ZXA(CLi)Zk it |ma(w)| > klw| withw=a;...a,.
i=1

Definition 1 (Syntax of raes). The set of regular availability expressions
(rae) over an alphabet X' is inductively defined as follows:

rae = a | rae+ rae | rae.rae | rae’ 1 V' | raeyg>y

witha € X, AC XY, 2 e{>>}, and k €0,1].

Kleene, Rabin, and Scott are available 3

The symbol v marks the positions at which the required availability is checked.
At these positions, the expression rae 4> ensures that the letters in A are avail-
able for at least fraction k. A highly available network may be specified by the
expression ((up + down)*.v') {up}>0.99- We abbreviate rae s\ a4)>1—r by raea<.
An rae is flat if the operator rae 4>k does not appear nested. Flat raes are
the intuitive model one expects. The system behaviour is captured by a regular
expression. For analysis purposes, availability constraints are added to restrict
the traces to the average behaviour. As the system typically does not react to the
occurrence number of events, nesting of availability operators is hardly needed.
Raes are given a semantics in terms of languages £ (rae) C (X U {vV'})*:

L(a) = {a} L (rae1 + raez) := L (rae1) U L (raes)
L (rae*) := L (rae)” L (raey.raez) := L (raey) .L (raes)
L) :={v} L (rae) = L (rae €) Az -

Operator L 4> collects all words in language £, where each prefix ending in v
satisfies the availability A 2 k as discussed above (not counting v'-symbols).
The operator also removes these symbols. Formally,

Lysp ={nz(w) 1 we L and [ma(wy)| 2 klrs(w)] for all wy.v .wy = w}.

Raes and classical regular expressions differ in their properties. Raes have an
undecidable language intersection problem

L (raer) N L (raesy) = 0. (Intersect)

Theorem 1. Intersect is undecidable.

Proof. The proof of Theorem 1 is by reduction of the termination problem for
Minsky machines to the intersection problem for raes. Since Minsky machines
are Turing complete [Min67, Theorem 14.1-1], termination is undecidable.

A Minsky machine M = (cq, ¢2, inst) has two counters ¢; and ¢y that store
arbitrarily large natural numbers and a finite set inst of labelled instructions
[: op. There are two kinds of operations op. The first, denoted by inc(c,1’),
increments counter ¢ € {¢1, co} by one and then jumps to the instruction labelled
by I’. The second command, denoted by dect(c,!’,1"”), is called a decrement and
test. It checks counter ¢ for being zero and, in this case, jumps to instruction I’.
If the value of ¢ is positive, the counter is decremented and the machine jumps
to I"”. We use Locs(inst) := {l 1 1 : op € inst} to refer to the set of control
locations in M. It contains an initial instruction i € Locs(inst) that starts the
computation of the Minsky machine. A final label lp ¢ Locs(inst) may appear
only as the destination of an instruction and terminates the computation.

Given a Minsky machine M = (c1, ¢, inst) we define two raes so that the
intersection of their languages is non-empty iff the computation of M terminates.

Construction. We start by splitting each instruction in inst into two parts, one
part for each counter. This yields two new sets of instructions inst; and insts.

4 Jochen Hoenicke, Roland Meyer, and Ernst-Riidiger Olderog

The parts added to inst; only affect counter ¢; and jump to the second part of
the instruction in insto. The parts added to insty affect counter ¢o and jump to
the first part of the next instruction. Since every instruction in inst only changes
one counter, we need a new operation goto(l) to jump when no change is made:

li s inc(cr, lj) € inst ~~ I vine(l)) € insty A1} = goto(l;) € insty
L : dect(er, lj, ly) € inst ~~ |« dect(l],1]') € insty Al : goto(l;) € insty
AU goto(l) € insta.

The translation for the second counter is similar. By this transformation, two
adjacent instructions [: op, I’ : op always change first the counter ¢; and then
c2. We encode the computation steps of the machines as lcv.ar? . U.cu.brt.
The sequence of v € N letters ¢ encodes the valuation of the counter ¢; before
the first instruction. The following symbol a is either i, d, or ¢ depending on
whether operation [: op increments the first counter, decrements it, or does
not act on it. An ¢ is also used if op tests the first counter for being zero. The
result of the operation is stored as a sequence of result letters r*". We ensure
that v = v + 1 if @ is an increment (similarly for decrement and goto) by an
availability expression avl, indicated by a brace in Formula 1 below. Then the
operation on cy starts, indicated by its label I’. In the encoding of the second
counter, b represents the operation to be performed.

The crucial issue is to transfer the result 7*" of an operation to the next
instruction that is executed. Again, we use an availability expression av2, which
now connects the encodings of two subsequent computation steps. To sum up, a
terminating computation of the machine is encoded by the word

avl
—_———

[lr-(c™.ag.r).07.(c"0 bo.r™1)|. [h.(c" . ar.r¥2).0f.(c" . by.r¥2)] . lp. (1)

av?

To encode the effect of a goto, we demand equality between the number of ¢ and
r symbols by stating that the availability of ¢ is precisely /5. This is achieved
by the regular availability expression

GOTO = ((C*.7”*.\/){6}21/2.\/){c}gl/2 .
To avoid clutter we abbreviate this by (¢*.r*.v"){cy—1/,. Note that this trick is

only valid if there is exactly one v'-symbol at the end of the expression. The fol-
lowing availability expressions implement increment and decrement operations:

INC := (C*.i.r*.\/){c,i}:l/2 DEC = (c*.d.r*.‘/){c’i}:l/z.

In the increment expression, the symbol ¢ is counted like ¢ and has to match
an additional r symbol, which ensures that the number of r symbols is by one
larger than the number of ¢ symbols. Likewise in the decrement expression, the
symbol d has to match an additional ¢ symbol, so the result value encoded by

Kleene, Rabin, and Scott are available 5

the number of r symbols is by one smaller than the number of ¢ symbols. Thus
all expressions encoding operations have the shape

(C*.CMD.’F*.\/){C’Z-}:VQ with CMD =i+ d +e.

With these definition, we define an availability expression rae(l : op) for every
instruction [: op. It ensures correct computation and control flow. Note that
tests for zero need to be implemented by ¢ instead of GOTO:

rae(l : inc(l')) == I.INC.l rae(l : dect(l',1")) :=1.I' + I.DEC.I"
rae(l : goto(l')) := 1.GOTO.l'.

Combining all commands on a counter, we define
OP; := Xj.opeinst;rae(l : op) fori=1,2.

We rely on two availability expressions that define a word corresponding to
a terminating execution of the Minsky machine. The first expression imitates
instructions on the first counter and copies contents of the second. It also ensures
that the execution ends at the final label and that the second counter is initialised
to zero. The second expression executes instructions on the second counter and
copies the contents of the first. It also starts the execution at the initial label
and initialises the first counter with zero:

raecmp1 (M) := OP1.e.CMD.[(r*.OP1.¢* V') { c.iy0Locs (inst)=1/- CMD| "1™ 1
raecmp2(M) = lr.e.CMD.[(1*.OP2.* .V){ c.iy0Locs(inst)=1/5- CMD] " .r* .OP2.

To copy the result value r* from one computation step to the counter value c*
in the next, we again employ availability expressions, i.e., we implement av2 in
Formula 1. One difficulty is that this copy operation is interrupted by an OP.
However, the definitions of INC', DEC, and GOTO guarantee an availability of
1/5 for the letters c, i between the labels. There are two labels in OP; since those
from Locs(inst;) are in the availability set, the full OP-command guarantees an
availability of exactly /5. As a result, we obtain equality between r* and c*.
One can show that M terminates if and only if the intersection

L (raeempr (M) N L (raeempz(M)) # 0.
is non-empty. The details can be found in the appendix. a
Remark 1. The intersection problem remains undecidable for eight flat raes.
Each of the raes in the previous construction can be expressed by four flat

versions (note that an equality requires two constraints).

Theorem 1 shows that raes correspond to an automaton model that is strictly
more expressive than finite automata. We investigate it in the following section.

6 Jochen Hoenicke, Roland Meyer, and Ernst-Riidiger Olderog

3 Availability automata

We define availability automata as transition labelled finite automata enriched by
(availability) counters that determine the presence of certain letters within a run.
Each counter represents a check operation of an availability A 2 k with A C X
and k € [0, 1], and transitions in the availability automaton are guarded by these
constraints. Additionally, each transition carries a reset operation Y := 0 that
denotes the counters that are reset so as to restart the measurement afterwards.

Definition 2 (Availability automata). Let X' be an alphabet. An availability
automaton over X is a tuple A = (Q, Qr, Qr, X, —, ¢) with states @, initial
states Q) C @, and final states Qr C). The availability counters are given by
X . The counter labelling function ¢ : X — (P(X)x{>,>}x]0,1]) assigns to each
counter x € X a constraint A 2 k. Transitions = C Qx IxP(X)xP(X)x Q are
labelled by X', check the constraints of their counters, and reset some counters.

Consider the availability automaton to the
right. We employ the following notation. States
are drawn as nodes. Initial states have an in-
coming arc, final states carry a double circle.
The first part A C X of the counter labelling
e(x) = (A Z k) is given as index x4 of the
counter. If two counters are indexed by the same
set A, we use different variables x4 and ya4. A
transition (q1,a, C, Y, q2) € — is drawn as di-
rected arc from ¢; to g2 labelled by a. A check
operation C = {x4} is written as x4 = k, revealing the remaining part of the
counter labelling. A reset set Y = {z} is denoted by x4 := 0.

To give an operational semantics, we exploit the following equivalence that
highlights the contribution of a single action to an availability expression:

[ma(w)| Z klw| iff |ma(w)] = klw]| 2 0.

To check the availability A 2 k, we compare the value of |74 (w)| — k|w| against
zero. More importantly, this value can be computed incrementally by adding 1
for each occurrence of a symbol of A and subtracting k for every symbol. The
observation suggests the use of counter valuations v : X — R. They assign to
each counter the value |r4(w)| — k|w| of the word w, which has been read since
the last reset. For a € X, we denote by x(a) : X — R the counter valuation
that assigns x4(a) — k to counter x checking c(z) = A 2 k. As usual, x4 is the
characteristic function. This enables us to describe the update when processing
the character a by 7' = v+ x(a). The reset v = 4[Y := 0] yields +'(z) = 0 if
z € Y and v/ (x) = v(x) otherwise.

The semantics of an availability automaton A = (Q, Qr, Qr, X, —, 1) is given
in terms of runs in the set R(A). A run r is a sequence

™ = (qo0-70-01-91-Y1-042.42.7Y2 - . . Ap..qn,- Y € R(A)

Kleene, Rabin, and Scott are available 7

subject to the following constraints. Initially, all counters are zero, yo(z) = 0
for all z € X, and the run starts in an initial state, g € @;. For every step
Gi—1-"Yi—1-0;.¢;.7y; there is a transition (g;—1,a;, C,Y,q;) € — such that v, =
(7i—1 + x(a))[Y := 0] and for each constraint € C, v;—1(x) + x(a;)(z) 2 0.
By the above transformation, this guarantees the desired availability.

Runs contain internal information about states and counter valuations. We
abstract them away to obtain the usual notion of the language of an automaton.

Definition 3 (Language). The language of A = (Q, Qr, Qr, X, —,1) is the
projection of all runs that end in a final location to their labels

L(A):={a1...an 1 90-7-01-¢1.71 - - - Apn-Gn-Yn € R(A) with q, € Qr}.

Like for finite automata, e-transitions do not contribute to the expressiveness of
availability automata but are convenient when encoding raes.

Lemma 1. For every X' U {e}-labelled availability automaton A, there is a X-
labelled availability automaton A" with £ (A) = L(A’).

As we will show later, the language emptiness problem is undecidable for general
availability automata. However, for automata with only one active counter in
each state emptiness becomes decidable. We call them simple.

Definition 4 (Simple availability automata). An availability automaton
A=(Q,Qr, Qr, X,—, ¢) is called simple, if there is at most one active counter
in each state. Formally, there is a mapping i : @ — X such that each transition
(g,a,C,Y,q") € — is only constrained by the counter of q, C C {u(q)}, and re-
sets the counter of ¢' if it differs from the counter of q, {ua(qd")} C {pa(q)}UY.

Simple automata capture precisely the languages of flat raes and are thus of
particular interest. The following two sections are devoted to the proof of this
statement. In general, availability automata are equivalent to intersections of
raes — modulo renaming.

3.1 From expressions to automata

To encode raes into availability automata, we define operators on the automata
that mimic the operations on raes. Choice A; + Az, sequential composition
Ai1.As, and iteration A* correspond to the constructions for finite automata.
Choice is defined by union, sequential composition introduces e-transitions from
the final states of the first to the initial states of the second automaton, and
iteration introduces e-transitions back to a fresh initial and final state. Different
from the classical definitions, counters are reset when a new automaton is entered
in A;.A4s and A*. All these operations produce simple availability automata if
the input automata are simple.

An availability constraint A 4>}, is reflected by a relabelling of the automaton.
The idea is to let every former v'-labelled transition check the constraint A 2 k.

8 Jochen Hoenicke, Roland Meyer, and Ernst-Riidiger Olderog

To this end, a new counter x 4 is added to the automaton and every v -transition
is relabelled to € and augmented by the counter’s constraint x4 2 k. For flat raes,
the operation results in a simple automaton, since the input is a finite automaton
without counters.

To reflect the intersection of languages — an essential ingredient in automata-
theoretic verification procedures — we define a synchronous product A; || Asz. It
multiplies the states Q1 x Q?, takes the pairs of initial states as initial Q} x Q?,
and likewise as final states Qf x Q%. Transitions synchronise on the label and
combine the guards. Note that simple availability automata are not closed under
synchronous product. The operators reflect their semantics counterparts.

Proposition 1 (Semantic correspondence).
L(A1.A2) = L (A1) .L(A2) L(A*) =L (A)"
LA+ As) = L(A1) UL (Ag) 'C(AAZm) :‘C(A)Azm
L(A | A2) = L (A1) N L(A2).

Proposition 1 paves the way for a compositional definition of the automaton
representation A[rae] of an rae. A single action a is translated to the automaton
that has an a-transition from an initial to a final state. The remaining operators
are replaced homomorphically by their automata-theoretic counterparts.

Proposition 2 (Kleene’s first half). £ (rae) = L (A[rae]). Moreover, if rae
is flat, then A[rae] is simple.

3.2 From automata to expressions

We start with a simple availability automaton A = (Q, Qr, @r, X, —, ¢) and
its counter mapping p : @ — X. Without changing the accepted language,
we can strip resets of counters that are not active in the successor state. We
compute a corresponding flat rae in two steps. First, we compute raeg s that
describes all words from g to ¢’ that obey the counter’s availability constraint.
More precisely, the rae models all words that are accepted by A when starting
in ¢ with a zero counter and reaching ¢’ with a reset only on the last edge.
Therefore, the concatenation raeq 4 .rae, o again corresponds to some partial
run of A. Likewise, we determine availability expressions rae, for the language
from ¢ (with a zero counter and without passing reset edges) to a final state.

In a second step, we construct a finite state automaton which has these raes
as transition labels. When using Kleene’s classical result to compute the regular
expression corresponding to the automaton, we obtain a flat rae. It has precisely
the language of A. Since we recorded the measurements as raes, there is no need
to add further availability constraints.

Phase 1 For every pair of states q,¢' € A, we construct a finite automaton*
Aq.q- We take the graph of A, make ¢ the initial state, and add a fresh final

4 A finite automaton is a tuple A = (Q, Qr, Qr, —) with the typical interpretation as
states, initial states, final states, and transition relation — C Q x X U {e,v'} X Q.

Kleene, Rabin, and Scott are available 9

state. Resetting transitions that previously ended in ¢ are redirected to the final
state. Thus, the measurement between ¢ and ¢’ ends with a reset. The remaining
resetting transitions are removed. Since A is simple, this makes all states with
a different active counter unreachable, so they can be removed together with
their outgoing edges. The resulting automaton has the single counter z := pu(q).
To reflect measurements of ¢(z) on an a-labelled transition, we split the edge.
The first new transition is labelled by a, the second by v'. Let —, denote the
outgoing transitions from a state where x is active, transitions —,.s C —, reset
the counter, and —,(,) € —; have c(x) as guard. By — 4 we refer to unguarded
and reset-free transitions in —, \ (—res U —>¢(2)). They can be understood as
transitions of a finite automaton:
Aq7q’ = (:u_l('r) U {qe S _>c(z)} U {QV}, {(I}, {QV}7 —std U —7 split U _>7‘Edi7“))
with —split = {(pya,Qe), (QEa ‘/»pl) e= (p7 a, {-T}a@yp/) € _>c(a:)} and — redir
={(p,a,q,) 1 (p,a,0,{p(q")},q') € —rres}. If the resetting transition to ¢’ is
guarded, also the redirected edge is split up.

The finite automaton A, is constructed similarly. It has ¢ as initial state,
uses the final states of the original automaton, and removes all resetting edges.
Guarded transitions are again split up and decorated by v':

A(I = (u’il(x) U {q@ leeg %c(x)}a {Q}a QFa —>std U Hsplit)

We compute an ordinary regular expression req o that accepts the language
of A, . Adding the constraint c(x) yields raeq ¢ := [req,q']c(z) that reflects the
measurement between ¢ and ¢’. We also construct re, and define raeq := [reg] c(q)-

Phase 2 From A we construct a finite automaton A that describes its language.
Again, we preserve the states, keep the initial states, and add a fresh final state.
The main idea is to summarise all paths between two states ¢ and ¢’ by a single
transition that is labelled by raeq . The expression takes care of the required
availability constraint. Similarly, from every state ¢ we have a transition to the
new final state that is labelled by rae,:

A= (QU{q}, Qr.{a}, {(g,maeqq,d") 1 4,4 € Q}U{(q,raeq,q,) 1 q € Q}).

Let rae[A] denote the regular expression for A. Due to the flat raes as labels, the
expression itself is again flat. It correctly represents the automaton’s language.

Ezample 1. Applying the algorithm to the automaton from the beginning of Sec-
tion 3 yields ((a + b)*a){a}zl/Z ((a*b(b\/)*b(a + b)*a){a}zl/z)*(a*b(b\/)*){a}zl/z.

Proposition 3 (Kleene’s second half). £ (A) = L (rae[A]).

Proposition 2 and Proposition 3 establish our second main result. Flat regular
availability expressions and simple availability automata are equally expressive.

10 Jochen Hoenicke, Roland Meyer, and Ernst-Riidiger Olderog

Theorem 2 (Kleene theorem for availability). A language is recognised by
a flat rae if and only if it is accepted by a simple availability automaton.

An availability automaton that is not simple can be decomposed into simple
automata. Take a free version Ay of the automaton A where transitions e have
unique labels, say a.. The original language can be obtained by removing the
indices with the homomorphism h(a.) = a. Thus, h(L (Ay)) = L (A) holds. The
free automaton Ay is decomposed into several simple availability automata Afc
with x as single counter. This decomposition projects away the constraints on
the other counters and leaves states and transitions unchanged.

Lemma 2. Consider Ay with counters X. Then L(Ay) =(,cx £ (AQ;)

With the previous result we derive the following correspondence.

Corollary 1. Up to a homomorphism, a language is recognised by an intersec-
tion of raes if and only if it is accepted by an availability automaton.

4 A powerset construction

The well-known powerset construction of Rabin and Scott that constructs deter-
ministic finite automata from non-deterministic ones can be extended to simple
availability automata. Like for finite automata, the key idea is to record in the
state of the deterministic automaton the possible states the non-deterministic
automaton can be in, e.g. {p, ¢} would be a state of the deterministic automa-
ton. For availability automata, also the possible values of the active counter in
different runs need to be represented. Therefore, the following observation is
crucial to our construction. For simple automata, it is sufficient to record the
highest availability for this counter. Thus, we record one value for each state of
the original automaton, which can be achieved by |@| counters. For the state
{p, ¢}, this yields counters z, and z,.

When the non-deterministic automaton changes its state without resetting
the active counter, say from p to p’, we need to set the counter x, of the new
state to the counter of the old state. As the syntax of availability automata does
not allow for counter assignments, we use a mapping p as part of the state of the
deterministic automaton. It yields for each state in the current set of states the
availability counter that stores the highest possible availability. In the running
example, p’ is assigned counter x,. We shall also need to compare two counters.
If p’ is also reached from ¢, we need to know whether z, is higher than z,.
Therefore, we keep an order > on the counters as part of the deterministic state.

Given a simple availability automaton A = (Q, Qr, Qr, X, —, ¢) with its ac-
tive counter mapping p4 : @ — X, we construct an equivalent deterministic
automaton det(A). As argued, we need a counter for each state, X¢ = Q. Ad-
ditionally, we keep a copy of the counters X?. While x measures A > k, counter
Z observes A < k. This allows for explicit checks of violations of an availability
constraint. States Q7 of the deterministic automaton are triples (q, iz, =) where

Kleene, Rabin, and Scott are available 11

— q C (@ is the set of possible states of the non-deterministic automaton like
in the construction of Rabin and Scott.

— 1 q — X% assigns to each possible state the counter that stores the cor-
responding availability. If a state ¢ € g is mapped to a counter u(q) = x4
corresponding to a state ¢ € @, we additionally require that g and ¢’ have
the same active counter p4(q) = pa(q’).

— > C u(q) x u(q) is a order on the counters. First, the order is compatible
with the counter valuations « in a run, i.e., y = x guarantees y(y) > v(x).
Additionally, > is a linear order on those counters that correspond to the
same counter in the original automaton A. More precisely, for ¢,q' € gq
with u(q) # p(q’), the corresponding counters are ordered (u(q) = p(q’) or
w(q") > p(q)) if and only if the states ¢ and ¢’ have the same active counter
1alq) = pald)-

We define the powerset automaton as
det("4) = (Qda ng Q(}iﬁ Xd U Yda %d, Cd)'

The initial state is Q¢ = {(Qr, pto, =0)} with the initial mapping pg that assigns
to each initial state ¢ € @ the corresponding counter z, € X 4 and > arbitrary.
The final states are the states that contain a final state of the original automaton,
Q% = {(g,p1,=) 1+ gN Qr # 0}. The constraints ¢? on the counters in X
are taken from A, c¢¥(z,) = c(pua(q)) for z, € X% The counter T measures
the inverse constraint. Since A < k is equivalent to X'\ A > 1 — k, we set
(@)= (Z\A>1—k)if ¢(z) = (A > k), and similar for A > k.

In the deterministic automaton, the edges are labelled by checks C? that
contain for each x € X? either or . Furthermore, we require consistency of
C“ with the order = of the source location:

y>=1 2z and z € C? implies ye CY

Since the counters x, T measure opposite constraints and are reset at the same
time, we have vy(z) 2 0iff v(Z) < 0 for every reachable counter valuation .
This means at most one set of constraints C'? is satisfied by «. Moreover, as was
discussed, reachable v are compatible with the order in the state. So, for y »=1 «
we obtain v(y) > v(z) and thus y(x) = 0 implies v(y) = 0. Therefore, for each
~ there is exactly one enabled C.

To define the transition relation —¢ of the deterministic automaton we de-
fine the unique successor state (ga, p2, >2) for each state (g1, p1,>1), each sym-
bol @ € X, and each constraint set C¢. The enabled transitions of the non-
deterministic automaton are the outgoing a-labelled transitions from states in
q1 for which the guard is true,

enabled := {(q1,a,0,Y,q2) € = 1 q1 € q1}
U{(q,a,{pala)}, Y, q2) € = 1 1 € qu,pa(q1) € Cd}~

The first part of the successor state qo is computed as for Rabin and Scott. A
state ¢o is in the set g5 if there is an enabled transition leading to it,

q2 ‘= {Q2 € Q ‘ HQM va : (qlvaa Ca}/aq2) € enabled} .

12 Jochen Hoenicke, Roland Meyer, and Ernst-Riidiger Olderog

The difficult part is computing the new counter valuations for each state g2 € gs.
If an enabled transition to go resets the counter p4(ge) we may need a fresh
counter in det(A) that is reset on the transition. The counter of g2 can also
be inherited from a source location if there is an edge in the non-deterministic
automaton that does not reset the counter. Let x,, denote a fresh counter for
@2, then the new counter used as pus(gz) is the counter with the highest value
from the set of candidates

CCL’IZCZ(QQ) = {$q2 I qua Ca Y: (qhaa Ca Y7Q2) € ena’bled7H’A(q2) € Y}
U{pi(gr) 1+ 3C, Y : (g1,a,C, Y, q2) € enabled, us(q2) ¢ Y}.

The set cand(g2) is non-empty for all ¢go € g2 and contains only counters z,
with p4(q) = pa(ge). The latter holds by definition of simple automata. A non-
resetting transition from ¢; to go requires the states to have the same active
counter, f14(q1) = pra(gz2). The fresh counters x4, are inserted into the order >
based on the guard C'?. This yields a new order =4. For every state q; € q; with
the same active counter in A, we check whether 1 (g1) is positive, which means
pa(q1) € C4. In this case, we add p1(q1) =5 4., otherwise xq, =5 p1(q1).
The new counter for g is the one from cand(g2) with the largest value,

p2(ge) == max,, cand(qz) for g2 € q2.

This counter is well-defined since cand(gz) is a non-empty finite set on which >}
is a linear order. We obtain >5 from >} by removing all unused counters,

=2 1= =5 N (p2(ga) X pa(qa)).

For the fresh counter z,4,, we can use any counter x4 that is not used in p2(q2)
for other purposes. Moreover, this counter should belong to a state g with the
same active counter as ¢o. If multiple states go, ¢4 with the same active counter
pra(g2) = pa(gy) need a fresh counter, we choose the same fresh counter z,, =
Ty in X 4, Since each state only uses a single counter, and since we have as many
counters as states, there must always be a free counter available if 112(g2) needs a
fresh one. Finally the edge ((q1, ut1,>=1),a, C% Y%, (qa, pi2, =2)) is added to the
transition relation —¢, where Y = {2,,,T4, | q2 € q2, a(q2) = 74, } is the set
of fresh counters that are used in the new state.

Ezample 2. We apply the powerset construction to the automaton from Sec-
tion 3. The resulting deterministic automaton is depicted on the next page. It
has twelve reachable states Q¢ = {Q;,Q: 1 1 <i <6} of which seven are given
in the figure. The states are Q1 = ({q1}, {¢1 — 71},0),Q2 = {q1, 2}, {1 —
T1,q2 = T2}, = 22),Q3 = ({q1, 2} {1 = 21,00 = w2}, 20 = 21),Q4 =
({1, a3} {q1 = @1,q3 = 22}, 21 = 22), Qs = ({q1, @3}, {q1 — 71,03 = @2}, 20 =
21),Qs = ({1,463}, {q1 — x2,q3 — x2},0). The states Q) are the states Q;
where the counters x1 and x5 are swapped. For space reasons we depict a check
on a counter by labelling the edge with the counter. The counters x1, x5 observe
the constraint {a} > !/, while Z1, @5 check the inverse constraint {b} > /5.

Kleene, Rabin, and Scott are available 13

The initial state @)1 corresponds to the initial state ¢; in the original au-
tomaton. Under the input symbol b only the loop edge (q1,b,0,, q1) is enabled.
Therefore for every counter constraint C'? the successor state is Q; again. We
combined the edges (Q1,b,{z1},0,Q1) and (Q1,b,{Z1},0,Q1) to a single edge
without counter constraints (Q1,b,0, 0, Q). For the symbol a there are two en-
abled edges in the original automaton leading to ¢; and ¢go. The edge to g resets
the counter. Therefore, we introduce a fresh counter zs for gs. For computing
the order between x5 and x1, we check the sign of 1. The successor is state Q2
with 1 > xo if 21 is positive and Q3 with zs = x1, otherwise.

Now we consider the outgoing edges from state Q5. The a-labelled edges are
the same as from @i, since there is no a-labelled edge starting from ¢s. For
symbol b the successor state depends on C%. If T € C?, there are two enabled
edges in the original automaton, namely (q1,b,0,0,q1) and (g3,b,0,0,g1). Both
enter ¢; and do not reset the counter. The candidates for the new counter of ¢;
are x1 or xo. By the linear order, x5 is larger in @5, hence this is the counter
used in the successor state Q1. If 2o € C?, then the edge (g3,b, {z{a}},0, q3) of
the original automaton is enabled. The successor state Q¢ contains ¢; and g¢3.

a, T

@, T1, T2

Proposition 4. £ (det(A)) = L (A).

The proof is given in the appendix. A deterministic automaton is complemented
by inverting the set of final states, det(A) = (Q%,Qd, Q¥\ Q%, XU X, -4,).

Proposition 5. £ (det(A)) = L (det(A)).

The construction shows that the set of languages accepted by simple availability
automata is a subset of the languages accepted by deterministic availability
automata, which in turn is a subset of the languages of all availability automata.
As simple automata can be simulated by one-counter machines, their emptiness
problem is decidable. The intersection problem is not, since it is not decidable
for flat raes. Hence, simple automata are not closed under intersection, and thus
not closed under complementation. General availability automata are also not
closed under complementation. Like for timed automata [AD94] one can argue

14 Jochen Hoenicke, Roland Meyer, and Ernst-Riidiger Olderog

that the complement of (a 4 b+ ¢)*.c.((a + b + ¢)*)q=1/2.c.(a + b 4 ¢)* is not
accepted by any availability automaton. Since deterministic automata are closed
under complementation this shows that their expressiveness is strictly between
simple and general automata.

4.1 Application to Verification

Equipped with the previous complementation algorithm, we are able to tackle the
following verification problems for discrete systems under availability constraints.

(Syn) 7B (MC) AE Bge.

The synthesis problem Syn asks for the most general availability automaton
that satisfies a Boolean combination of availability expressions B,q.. As usual,
satisfaction is defined in terms of language inclusion. The model checking prob-
lem MC takes an availability automaton .4 modelling the system of interest
and an availability expression B,,. that formalises the correctness condition. It
reduces the problem whether A is a model of B,,. to a reachability query.

Our complementation algorithm is restricted to simple availability automata.
Relying on the negation normal form for B,,., the following theorem is an im-
mediate consequence of our previous efforts.

Theorem 3. Consider a Boolean combination of flat raes. There is an algorithm
that solves Syn. MC is reducible to reachability in availability automata.

By Theorem 1, reachability in availability automata is of course undecidable.
The definition of runs however suggests to view availability automata as partic-
ular counter automata. Therefore, Theorem 3 allows us to use state-of-the-art
tools like SLAM [BR02] or BLAST [BHJMO7] to solve MC. They support
abstraction-aided reachability analysis and often successfully tackle this unde-
cidable problem in practically relevant cases.

5 Conclusion

We defined an extension of regular expressions to specify the availability of sys-
tems. We developed a corresponding automaton model and established a full
Kleene theorem. It shows that the two denote the same formal languages. An
undecidability proof places the models between finite automata and counter au-
tomata. Finally, we give a complementation algorithm for the restricted simple
availability automata. It yields a fully automated synthesis procedure for a prac-
tically significant class of regular availability expressions. Moreover, it allows for
a reduction of availability model checking to reachability analysis.

Related work. Various extensions of regular expressions have been proposed.
For example, in [ACMO02] timed regular expressions are introduced and proven
equivalent to timed automata of [AD94] by a timed analogue of Kleene’s theorem.
The availability formula in the introduction can be stated directly in real-time

Kleene, Rabin, and Scott are available 15

logics like the Duration Calculus [CHO4] or investigated operationally in suitable
subclasses of hybrid automata like stopwatch automata [CL00] or priced timed
automata [LRO8|. The advantage of the discrete setting we chose is that the
essentials of availability can be studied in isolation without being overwhelmed
with the technicalities of continuous timed and hybrid systems.

Availability automata are also closely related to the work on weighted au-
tomata [DKV09]. There, the alphabet is equipped with a weight function that
assigns each letter a weight in some semiring. Examples include the interesting
semiring ([0, 1], maz, -, 0,1). It can be used to determine the reliability of a word
by assigning a probability k& € [0,1] to each letter. Crucially different from our
model, weighted automata do not have guards and thus the measurement does
not influence the system behaviour. We employ checks and resets on the avail-
ability to mimic loop invariants as they are standard in programming languages.

In Presburger regular expressions [SSM03], a regular language is constrained
by additional Presburger formulae. Our initial example of a network with 99 %
availability can be specified in this formalism as (up + down)* A zup > 992 down.-
Again, as opposed to our approach, conditional executions based on intermedi-
ary valuations are not supported. Moreover, our resets allow for an unbounded
number of measurements whereas Presburger regular expressions only have a
finite number of arithmetic constraints.

Future work. Our results are only a first step in the study of quantitative sys-
tem properties. We plan to extend the work to w-regular and to timed languages.
Also logical characterisations of availability languages seem interesting.

Practically, we envision the following application of the presented technique.
By stochastic techniques, we establish availability constraints rae o> that model
the components of a distributed system [dSeSG89,RS93]. When reasoning about
their interaction, we abstract away the stochastic information and rely on our
new availability models. Proximity to integer programs allows us to reuse efficient
software model checkers for their analysis [BR02,BHIMOT].

Our undecidability proof of the intersection problem (Theorem 1) requires
two rae. We leave open decidability of the emptiness problem for a single rae.

References

ACMO02. E. Asarin, P. Caspi, and O. Maler. Timed regular expressions. Journal of
the ACM, 49:172-206, 2002.

AD94. R. Alur and D. L. Dill. A theory of timed automata. Theoretical Computer
Science, 126:183—-235, 1994.

BHJMO7. D. Beyer, T. A. Henzinger, R. Jhala, and R. Majumdar. The software model
checker BLAST. STTT, 9(5-6):505-525, 2007.

BRO02. T. Ball and S. K. Rajamani. The SLAM project: debugging system software
via static analysis. In Proc. of POPL, pages 1-3. ACM, 2002.

CHO4. Z. Chaochen and M. R. Hansen. Duration Calculus: A Formal Approach to
Real-Time Systems. EATCS Monographs. Springer, 2004.

CLO0O0. F. Cassez and K. G. Larsen. The impressive power of stopwatches. In Proc.
of CONCUR, volume 1877 of LNCS, pages 138-152. Springer, 2000.

16 Jochen Hoenicke, Roland Meyer, and Ernst-Riidiger Olderog

DKVO09.

dSeSG89.

LROS.

Min67.
RS59.

RS93.

SSMO03.

Tri0l.

M. Droste, W. Kuich, and H. Vogler, editors. Handbook of Weighted Au-
tomata. EATCS Monographs. Springer, 2009.

E. de Souza e Silva and H. R. Gail. Calculating availability and performabil-
ity measures of repairable computer systems using randomization. Journal
of the ACM, 36(1):171-193, 1989.

K. G. Larsen and J. I. Rasmussen. Automata-theoretic techniques for modal
logics of programs. Theoretical Computer Science, 390:197-213, 2008.

M. Minsky. Computation: Finite and Infinite Machines. Prentice Hall, 1967.
M. O. Rabin and D. S. Scott. Finite automata and their decision problems.
IBM Journal of Research, 3(2):115-125, 1959.

G. Rubino and B. Sericola. Interval availability distribution computation.
In Proc. of FTCS, pages 48-55. IEEE, 1993.

H. Seidl, T. Schwentick, and A. Muscholl. Numerical document queries. In
Proc. of PODS, pages 155-166. ACM, 2003.

K. S. Trivedi. Probability and Statistics with Reliability, Queuing, and Com-
puter Science Applications. Wiley, 2nd edition, 2001.

Kleene, Rabin, and Scott are available 17
A Missing proofs

Proof (of Theorem 1). We show that M terminates if and only if the intersection
of the defined raes is non-empty:

L (raecmp1(M)) N L (raeemp2(M)) # 0.

If We show that termination implies non-emptiness of the language. If machine
M terminates, then its computation is finite and its last location has to be Ig.
So, the computation sequence has the form

7= (11,0,0) (&, v1,u1)(l2, v2, u2) (I3, v3,u3) . . . (b, Un, Un) (LF, Ung1, Unt1)-

It is reflected by the following word, where we put brackets for the sake of
readability:

w(t) =[lr.(c.ar.r?).0f (2. br.r™)].
[L.(c" .ay.rv?).0f (" . by.r2)]. ..

[l (€™ ap.r?m 1) 0% (¢ byt R

The letters a;, [and b; are defined as follows. If [; : op; is an increment com-
mand on the first counter, we have a; = ¢, I = I/ and b; = . If it is a decre-
ment and test and the decrement is executed in 7 on transit from (;, v;, u;) to
(L1, Vig1, uig1), we set a; = d, I¥ = 1!' and b; = . If the test for zero is exe-
cuted, we have a; = ¢, [= I/ and b; = €. For a command that change the second
counter [} = I/ and the encoding is a; = ¢ and b; = i for an increment, b, = d
for an executed decrement and b; = € for a decrement and test with u; = 0.

We show that the sub-words w;1 := }.c%.a;.c+.IF of w(T) match the
regular expression OPq: If [; : inc(1, l;11) is an increment command on the first
counter, then a; = i, viy1 = v; + 1 1 : inc(l]) € insty, hence OP; contains the
choice

ZZINCZZ/ = li'(C*~i‘r*~/){c,i}:50%'lfz .

For the availability note that the sub-word c"?.i.c%+* has length v; + 1 +v;4+1 =
2v; + 2 symbols of which are v; + 1 in the set {c¢, i}, therefore the availability is
Yo, If I« dect(1, 1, ly) is a decrement command on the first counter then OP;
contains the choice

llll/ + ZZDECZZN = lzlzl + li.(C*.Z..T*.\/){c7i}:50%.li//) .

If v; > 0, then a; = d, I¥ =1, v;y1 = v; — 1. The word ¢¥i.i.c+! has length
v; + 1+ v;41 = 2v; symbols of which are v; in the set {c, i}. Hence w; 1 matches
the regular expression above. If v; = 0, then v; 11 = 0, a; = ¢ and [= I/, hence
w; 1 = LI matches the regular expression. If the instruction /; : op operates on
the second counter, then [; : goto(l); € inst; and OP; contains the choice
l;.GOTO.loc; = .(¢*.1" V') {¢,i}=50%

/!
i .

18 Jochen Hoenicke, Roland Meyer, and Ernst-Riidiger Olderog

The word c¢¥i.c¥i+! has length v; + v;4+1 = 2v; and v; symbols in the set {c,i}.
Hence it matches the regular availability expression.

Since I; € instCM; and I ¢ instCM; the availability of {c, i} Uinsty in w; 1
and therefore also in the word r“*.w; ;.c" is 1/2. Hence, the latter satisfies the
expression

(T*.Opl -C*~\/){c,i}uin5t1 .

Finally we see that
w(T) = wo1.€.bp. 7wy 1.c* by Lt awg g et by
satisfies the regular availability expression
1a€cmpt (M) = OP1.CMD.[(r*.OP1.¢* V') {c.iULocs(instr)=1/o- CMD] "1™ 1.

The proof that w(7) € L (raecmpz(M)) is very similar.

Only if We show that non-emptiness of the intersection of the rae languages
implies termination of the Minsky machine. If the intersection of the two lan-
guages is not empty, we have a word of the form

w =[lo.(c®.ag.m*).15 . (. bo. 7).
[h.(c¥t.ay.r2). 05 (e .by.r"2)) . .

Y S WA o S eey) 7o

where [; € Locs(inst1), I € Locs(insta), a;, b; € {4, d,e} and u;, u}, v, v > 0.

Before we discuss the values of the v;, v} and u;, u}, we argue on the shape of
w. By definition of GOTO, INC, and DEC every word that matches OP; has
the form J;c% a;rit ¥ with [; € Locs(insty), I € Locs(insts), act; € {i,d, e}
and some u}, u;41. Therefore, every word that matches raecmp1 (M) must have
the shape w above.

We exploit the definition of INC, DEC, and GOTO in OP; to prove a
relationship between v}, a;, and v;41 within the subwords c”i.ai.rv”l. We show
that if a@; is ¢ we have v;y1 = v, + 1, if a; = d we have v;11 = v} — 1, and if
a; = ¢ then v; 1 = v}. Similar statements hold for the second counter. We restrict
ourselves to the case of increments, the remaining operations follow along the
same lines. The INC expression requires (c”i.z’.r”i“){cyi}:l/r By definition of
the availability constraint, we get

v+ 1 =150 + 14+ vi1), which implies 20 + 2 =0 + 1+ vi41.

We conclude v} + 1 = v;41 as required. From raecpmp2(M) a similar relation can
be deduced for u; and w;11.

Exploiting these equalities, we prove that w; = u}; holds by the availability
expressions ra€cmp1 (M) and v; = v} by raecmp2(M). Consider a substring with
an increment command

. ’ . . /
(et) et

Kleene, Rabin, and Scott are available 19

By the required availability [T*.0P1.C*] (i} ULocs (insty)=1/»" WE obtain

L4 oj+ 14w =Yo(ui + 1+ 0+ 1+ v + 1+ w)

With v} + 1 = v;41, the second equation allows us to conclude v; = vj. So the
shape of the word is correct and the stated equalities between the numbers hold.
The cases of decrements and varepsilon actions again follow analogously.

Given the above word w in the intersection of the rae languages, we apply
can construct a run of the Minsky machine:

T = (11,0, 0)(1171}1,@&1)(12, UQ,UQ) e (ln,’l)n, Un)(lF,Un+1,un+1).

We argue that the transitions (I, vs, w;)(ly1,vir1,u41) are valid. Assume [;
is a decrement and test command on the first counter and assume v; > 0.
Increment commands are simpler. The rae corresponding to the command is
rae(l; : dect(l[,1!',))) = .l + ;. DEC.I"). Since the subword

is accepted by OP7, we conclude that I/’ = [*. Moreover, we have q; = d and
thus with the argumentation above v; 11 = v;—1. The subword I/.(c"i.b;.r"+1). ;11
is accepted by OPs, which in this case is rae(l]’ : goto(ly)) = ;. GOTO.I!. There-
fore b; = €, u; = u;41 and [; 1 equals Ii.. Since this is the semantics of a decrement
l; : dect(c1, 1, i) in a state (L, v; > 0,u;), the transition is valid.

If the counter is zero, v; = 0, then [} = I/ and v;41 = 0 since OP; matches
L;ll. As above we can see that w; = u;41 Ly1 = [;. This also corresponds a
transition in the Minsky machine.

So 7 is a finite computation and the machine terminates. This concludes the
proof of the reduction. a

A.1 Equivalence of rae and availability automata

We define the operators on availability automata outlined in Section 3.1 and
provide the proof of semantic correspondance in Proposition 1. In the following,
we always let A; = (Q°, Qf, Q%, X', —* ') with i = 1,2 and disjoint sets of
states and counters. Similarly, we always have A = (@, Qr, Qr, X, —,1).

Definition 5 (Operators).

A+ A= (Q'UQ% QI UQY QrUQE X' UX? =tu=21'u?)
AL Ay = (Q'U Q% Q) QA X' uX? »tu=2u—,, Itu?),

where —, == QF x {e} x {0} x {X?} x Q3.
A* = (Q U {QV}7 {ql/}’ {QV}7X7_> U _>11/ U _>12/7 l)7
where =L = {q,} x {e} x {0} x {X} x Qr and =2 := Qp x {e} x {0} x {0} x {q, }.

Al || A2 = (Ql X Qza Q[l X Q[Qa Q}lw_‘ X Q}27’7X1 UXQa_>V7l1 Ul2)

20 Jochen Hoenicke, Roland Meyer, and Ernst-Riidiger Olderog

where —, :={((p*,p?),a, CtUC% Y UY2 (¢*,¢*) 1 (p',a, C,Y", ¢") € =},
AAZk = (Q7 QIa QF;XU {$V}7_>Vvlu {(xWA)})v

where =, == {(p,e,{z,} U C,Y,q) 1 (p,v,C,Y,q) € =} U{(p,a,C,Y,q) 1
(paaaC7Y;q)€4) anda;é\/}

Proof (of Proposition 1). We show that availability constraints are reflected:
L(As>r) 2 L(A) >, Let ms(w) € L(A) 4>, By definition, there is a run

™ = (q0-7-01-91-Y1-042.42.7Y2 - . . Ap..qn,-Yn € R(A)

so that w = ay ...a,. We show that there is a corresponding run r, of A,>;
for mx(w). It is similar to but has values for the clock ¢, and replaces all v
symbols by €. We need to check for the presence of appropriate transitions.

As risarun of A, for every tuple g;—1.7;—1.a;.¢;-i+1 there is a corresponding
transition (g;—1,a;, C;, Y;,p;) € — whose guard C; is satisfied by the prefix of
the run. In case a; # v/, the transition also exists in A 4>; and can be taken. If
a; = v, the transition is replaced by (p;—1,¢&, {z,} U C’ij(hpi) in Ag>p.

To argue that x, 2 k holds, we stress that the counter x, is never reset.
So we need to check that the ratio of A letters in mx(w’) with w’ = a;y...a;_1
satisfies 2 k. By the assumption that w € £ (A) 4>, we have

[ma(wi)| 2 klms (w)]

for all decompositions wi.v".wg of w. Since a; = v/, word w’ is such a w.
Therefore, we have the desired availability.

L (.AAzk) CLA) >, Letwel (.AAE;C). By definition, there is a run

T = q0-Y0-01-q1-71-02-G2.Y2 - - - A -Gr-Yn € R(A)

so that w = ay ... a,. By construction, A,>}, relabels some v'-transitions of A
to € and poses additional constraints that we shall discuss below. This means,
in A there is a similar run

= qo.70-01-q1.71-A5-q2.Yh - . .l .qn s, € R(A)

The counter valuation v, is the same as ~y; except that z, is projected out. The
labels in X' coincide with those of r, a; = a; if a; € X, and a} = v may hold
for some a; = €. Note that by construction a; is always different from v'. As a
result, we have mx(w') = w for w' =a}...al,.

We now show that the availability constraint holds for every decomposition
w' = wi.v.wh. Let w) =a}...a,_; so that a} = v'. By construction, the run in
A4>p, took a transition (g;-1,¢, {z,} U C;, Vi, q;). The last moment that z, was
reset in 7 was in the initial state. Therefore, we get

ma(w)] = [ralar ... ai)| 2 klrs(ar. .. a;)] = [rs(w))|

which proves satisfaction of the constraint for wj.

Kleene, Rabin, and Scott are available 21

Proof (of Proposition 3). Consider the simple automaton A = (Q, Q;r, Qr, X, —
,1) and let rae[A] be the rae constructed by the procedure described in Sec-
tion 3.2. We show that the languages £ (rae[A]) and £ (A) both coincide with
an intermediate language

L={wi...wy, 13q1...qn:q1 € Qr,w, € L(10eg,)

w; € L (raeg, q,,,) fori=1,....,n—1}.

Consider the finite automaton A in the second phase of the construction of
rae[A]. It accepts the sequences

TA€qy,qyTACq5,q3 - - - TACq, 1 ,q, - TACq,,

with ¢1 € Qr. Since rae[A] is constructed as the regular expression of this
automaton A, every word w € rae[.A] can be split into subwords w; . .. w,, each
matching an expression raegy o or rae,. Thus, £ (rae[A]) = L.

Now consider a word w accepted by A. The accepting run can be split after
every reset transition into subruns that accept the words wi,...,w,. The i-th
subrun (i = 1,...,n — 1) accepting the word w; starts with a clock valuation
~v(z) = 0 in a state ¢; and ends in a state ¢;41. This is in turn the state in which
the next subrun starts. By construction the edge reaching ¢;41 is resetting. Each
time a transition of A which checks the counter is taken, the corresponding prefix
of w; satisfies the availability constraint, since x is never reset in between. By
construction of the automaton A, 4, ,, this means that each w; is accepted by
Taeq; q;., - The last subrun reads wy, ends in a final state and does not execute
any reset operation. Therefore, a corresponding run in A,, exists, which means
that wy, € raeq,. We conclude that the words w accepted by A are the words in
L. This concludes the proof that £ (rae[A]) = L (A).

A.2 Powerset construction

Before proving the correctness of the powerset construction we show that the
order > in the states is consistent with the counter valuations - in any run of
the deterministic automaton.

Lemma 3 (Counter order). Consider a run of the deterministic automaton

det(A)
7= (qo, H0;, =0)-70-a1-(q1, 1, =1) V1 - - - Q- (Gns fry =) V-
For alli and x,y € pi(q;)
x = y implies v;(x) > 7i(y).

Proof. The proof is by induction on 4. For ¢ = 0, the lemma holds because
Yo(z) = 0 = 70(y). Now we assume it holds for ¢ and show it for i+ 1. If z, y are
not reset in step ¢ then v;41(x) = v;(x) + x(a)(x). The counter are only ordered

22 Jochen Hoenicke, Roland Meyer, and Ernst-Riidiger Olderog

x =41y if y and x have the same active counter. Therefore, x(a)(z) = x(a)(y)
and the induction hypothesis carries directly over to i 4+ 1. If y is reset then x
is not reset (only one fresh counter is introduced for each set of states with the
same active counter). By definition of 5 in the power set construction the guard
C? in the step from i to i + 1 contains clock x, hence v;11(z) > 0 = vi11(y).
The case that x is reset is proved analogously.

Proof (of Proposition 4). 2 Let w=ay...a, € L(A) and
T =q0-70-01-G1-V1 - - - An-Gn-Yn € R(A)

the corresponding run. Since det(.A) is a deterministic automaton there is a
unique run of det(A)

rd = (qo, 1, >o).v8l.a1.(q1,u1, >1)~’Y(1i . ~~an~Qn~’Yg € R(det(A))

We show by induction that ¢; € gq; and v¢(u;(g;)) > 7i(a(g)). For i = 0, it
is go € Qr = qo and 7¢(1o(g0)) = 0 = ~0(pa(go)). Now assume the induction
hypothesis holds for 4. In the run r a transition e = (g;,a;+1,C, Y, ¢i+1) € —
was taken. If C' = (), this transition is in the set of enabled edges. Otherwise,
C = {pa(z)} and vi11(1a(g;)) Z 0. By induction hypothesis also v, ; (1i(¢:)) 2
0, so 1;(q;) € O for the transition taken in the deterministic automaton.

In any case, the edge e is in the set of enabled edges. Hence, g; 11 € g;41 holds
as desired. If Y does not reset the clock p4(gi+1), then the active counter did
not change (1.4(q;) = pa(gi+1)) and the counter p;(g;) is in the set of candidates
cand(qi+1). By construction pu;41(qiv1) =i, pi(qs), so

Y (i1 (gi1)) = ¥ (@) = v (aa) + x(@) (pia:)
> vi(pa(ai) +x(a)(a(a:) = Vi1 (palgiv))-

If Y resets p1.4(qi+1), then cand(qi41) contains the fresh clock zg, . If p12(gi+1) =
Zgq,,, this clock was also reset in Y¢ s0 both counters are zero in 7,41 resp. '7?+1~
Otherwise, pa(g2) =41 g,y 50 p2(g2) € C?. Since the edge with the guard C?
was taken in the step from i to i + 1 and the clock ji2(g2) is not reset in Y, we
get i (12(a2)) > 0 = Yit1(1alge))-

Since r is an accepting run, it ends in a final state. Therefore, g, N Qr #
and r? ends in a final state, too. Therefore % is an accepting run of det(A) and
aj ...an € L(det(A)).

C Letw=ay...a, € L(det(A)) and
rd = (qos, p1, >0).fyg.a1.(q1, 1, >1).fyf v (G o, »n).’yff € R(det(A))

its run. One can show by induction on 7 that for each ¢; € q; there is a corre-
sponding run
T = q0.Y0-01-91-71 - - - 4;.G;-Y; € R(A)
of A with vi(na(g:)) = v (1i(ai))-
Since r¢ is an accepting run, it ends in a final state. Therefore, there is a

Gn € qn N Qp. For this there is a run r for a; ...a, that ends in ¢,. This proves
a...an € [/(A)

	Kleene, Rabin, and Scott are available

