Combining Specification Techniques for
Processes, Data and Time *

Jochen Hoenicke and Ernst-Riidiger Olderog

Fachbereich Informatik, Universitdat Oldenburg
26111 Oldenburg, Germany
Fax: +49-441-798-2965

{hoenicke,olderog}@informatik.uni-oldenburg.de

Abstract. We present a new combination CSP-OZ-DC of three well re-
searched formal techniques for the specification of processes, data and
time: CSP [17], Object-Z [36], and Duration Calculus [40]. The emphasis
is on a smooth integration of the underlying semantic models and its
use for verifying properties of CSP-OZ-DC specifications by a combined
application of the model-checkers FDR [29] for CSP and UPPAAL [1]
for Timed Automata. This approach is applied to part of a case study
on radio controlled railway crossings.

Keywords: CSP, Object-Z, Duration Calculus, transformational seman-
tic, real-time processes, model-checking, FDR, UPPAAL

1 Introduction

Complex computing systems exhibit various behavioural aspects such as com-
munication between components, state transformation inside components, and
real-time constraints on the communications and state changes. Formal specifi-
cation techniques for such systems have to be able to describe all these aspects.
Unfortunately, a single specification technique that is well suited for all these
aspects is yet not available. Instead one finds various specialised techniques that
are very good at describing individual aspects of system behaviour. This ob-
servation has led to research into the combination and semantic integration of
specification techniques. In this paper we combine three well researched specifi-
cation techniques: CSP, Object-Z and Duration Calculus.

Communicating Sequential Processes (CSP) were originally introduced by
Hoare in [16] and developed further in [17]. The central concepts of CSP are
synchronous communication via channels between different processes, parallel
composition and hiding of internal communication. For CSP a rich mathemat-
ical theory comprising operational, denotational and algebraic semantics with
consistency proofs has been developed [30]. Tool support comes through the
FDR model-checker [29]. The name stands for Failure Divergence Refinement
and refers to the standard semantic model of CSP, the failures divergence model,
and its notion of process refinement.

* This research is partially supported by the DFG under grant O1/98-2.

This is the author’s version of the work published in Integrated Formal
Methods (IFM 2002), LNCS 2335, pages 245-266. Springer, 2002. The
orginal publication is available at
www.springerlink.com/index/10.1007/3-540-47884-1_14

http://www.springerlink.com/index/10.1007/3-540-47884-1_14
http://dx.doi.org/10.1007/3-540-47884-1_14

2 Jochen Hoenicke and Ernst-Riidiger Olderog

Z was introduced in the early 80’s in Oxford by Abrial as a set-theoretic and
predicate language for the specification of data, state spaces and state transfor-
mations. The first systematic description of Z is [38]. Since then the language
has been published extensively (e.g. [39]) and used in many case studies and
industrial projects. In particular, Z schemas and the schema calculus enable a
structured way of presenting large state spaces and their transformation. Object-
Z is an object-oriented extension of Z [36]. It comprises the concepts of classes,
inheritance and instantiation. Z and Object-Z come with the concept of data
refinement. For Z there exist proof systems for establishing properties of specifi-
cations and refinements such as Z/EVES [31] or HOL-Z [19]. For Object-Z type
checkers exist. Verification support is less developed except for an extension of
HOL-Z [32].

Duration Calculus (DC for short) originated during the ProCoS (Provably
Correct Systems) project [13] as a new logic and calculus for specifying the
behaviour of real-time systems [40,12]. It is based on the notion of an observable
obs interpreted as a time dependent function obsz : Time — D for some data
domain D. A real-time system is described by a set of such observables. This links
up well to the mathematical basis found in classical dynamic systems theory [20]
and enables extensions to cover hybrid systems. Duration Calculus was inspired
by the work on interval temporal logic [23,24] and thus specifies interval-based
properties of observables. Its name stems from its ability to specify the duration
of certain states in a given interval using the integral. By choosing the right set
of observables, real-time systems can be described at various levels of abstraction
[28,26,33,4]. Verification support for the general DC is provided by [35,14] using
theorem provers, and for a more specialised application of DC by [6] using a
translation into timed automata for model-checking with UPPAAL [1].

It is well known that a consistent combination of different specification tech-
niques is difficult [18]. Very popular is currently UML, the Unified Modeling
Language [2]. Tt collects all the widespread specification techniques for object-
oriented systems in one language. There is even an extension UML-RT [34]
intended to cover real-time systems. However, a closer examination shows that
this extension is just able to deal with reactive systems. A problem with UML
is the so far missing semantic basis for this huge language. It is still a topic of
ongoing research to provide a semantics for suitable subsets of UML.

We believe that the best chances for a well founded combination are with
specification techniques that are well researched individually. An example of a
clear combination of two specification techniques is CSP-OZ [8,9]. In this paper
we extend CSP-OZ by the aspect of continuous real-time. This is done by com-
bining it in a suitable way with DC. The resulting specification language we call
CSP-0OZ-DC. The paper is organised as follows. Section 2 introduces the main
constructs of CSP-OZ-DC. Section 3 describes the semantics of the combination.
Section 4 shows how this semantics can be utilized for a partially automatic ver-
ification of properties of CSP-OZ-DC specifications, and applies this approach
to an example of a radio controlled railway crossing. Finally, we conclude with
section 5.

Combining Specification Techniques for Processes, Data and Time 3
2 The Combination CSP-OZ-DC

In this section we introduce the new combined formalism with some examples
taken from a case study of radio controlled railway crossings!, see Fig. 1. The
main issue in this study is to remotely operate points and crossings via radio
based communication while keeping the safety standard.

s L |

Fig. 1. Case study: radio controlled railway crossings

crossing

point

Fig. 2 surveys the controller architecture for a small part of this case study
dealing with the safety of a level crossing. The diagram shows several compo-
nents connected by communication channels. We discuss here the cross controller
whose purpose is to secure the crossing upon requests issued by trains via the
radio controller. We consider a multi-track level crossing where a request can be
made for each track with the set communication. A request can be withdrawn
at any time via the clear communication. The cross controller starts its securing
cycle when at least one request was given. It continues through that cycle even
if the request is withdrawn at a later time. When the crossing is secured it can
communicate secured events to all requested tracks. When the train passes the
crossing a wheel counter will notice that and trigger the passed communication.
When no more requests are pending the crossing can be released.

Wheel counter Radio controller

requested tracks@ set, clear: Track
secured: Track

passed: Track v

Cross controller

tgat tgate: UpD
setgate, getgate: UpDown setlight: Light

Gate Lights

Fig. 2. Controller architecture

! This case study is part of the priority research program “Integration of specification
techniques with applications in engineering” of the German Research Council (DFG)
(http://tfs.cs.tu-berlin.de/projekte/indspec/SPP/index.html).

4 Jochen Hoenicke and Ernst-Riidiger Olderog

To specify the cross controller several concepts must be handled, as described
in the following. The cross controller communicates with other components, e. g.
the radio controller. The order of these communications can be easily specified
with CSP using mutually recursive process equations. The main equation is
distinguished by the process identifier main. For the cross controller we have

main = assigned — setlight!yellow — setlight!red
— setgate!down — getgate.down — Secure
Secure = secured?t — Secure
O free — setgatelup — setlight!off — getgate.up

— wait — main

The symbol = is used instead of an ordinary equals symbol to distinguish be-
tween CSP process equations and Z equations. The communication assigned will
be local and enabled only when a request for the crossing is pending (see Fig. 3).
The crossing is secured in three steps: switch on first the yellow and then the
red light, and afterwards close the gate. Next the process waits for a confir-
mation getgate.down form the gate that it is indeed closed. Then the crossing
has reached a secure state and its further behaviour is modelled by the process
Secure. Here it waits until all requests are either cleared or the corresponding
train has passed the gate. Afterwards the gate opens again and the lights are
switched off.

The cross controller should work for multi-track crossings. It therefore needs
to remember the set of requested tracks. Handling such data and state informa-
tion can be easily done with Object-Z (OZ). The state space is denoted by an
unnamed schema:

r: P Track

The initial state is described by an Init schema like this:
Init

Fr:@

When a communication event like set is received from the radio controller, the Z
state needs to be updated. In CSP-OZ it is very easy to link a data operation to
a communication by writing a Z-schema with the name com_set specifying the
operation associated with that communication event:

___com_set
A(r)
t?: Track

t?Er A =rU{t?}

The A in the first line of this schema declares that this operation may (only)
change r. The next line declares a parameter ¢, decorated with ? to signify that

Combining Specification Techniques for Processes, Data and Time 5

t is an input parameter. Notice that this naming convention of Z corresponds
nicely with the naming conventions of CSP: the output of ¢ along channel set
synchronises with the input of ¢ in the Z schema. In Z a state transformation
is expressed by a predicate relating the state before and the state after the
transformation. The second state is distinguished from the first one by decorating
it with a prime. In this case the predicate states that the element ¢7 is added to
the set r of requested tracks.

For embedded controllers another important aspect are real-time constraints.
In our case study we want communication events to occur within certain time
bounds. On the other hand, some events must not occur too early. This means
we need timed progress and stability constraints. For specifying such real-time
constrains, we use the Duration Calculus (DC). In DC state assertions P describe
time dependent properties of observables obs : Time — D. Duration terms
describe interval-based real values. The name of the calculus stems from terms of
the form | P measuring the duration of a state assertion P, i.e. the accumulated
time that P holds in the considered interval. The simplest duration term is the
symbol £ abbreviating [1 and thus denoting the length of the given interval.
Duration formulae F,G describe interval-based properties. For example, [P]
abbreviates [P = ¢ A £ > 0 and thus specifies that P holds (almost) everywhere
on a non-point interval. Sequential behaviour is modelled by the chop operator
“37: the formula F' ; G specifies that first F' and then G holds. The formula ¢ F
abbreviates true ; F' ; true and thus expresses that on some subinterval F' holds.
The dual OF abbreviates -~—F and thus states that /' holds on all subintervals.

A subset of the DC are the so-called implementables due to [27], which make
use of the following idioms where ¢t € Time:

F— [P] == O—=(F;[-P]) [followed-by]
F-5[P] == (FAL=1t)—> [P] [leads-to]
FEL(P] == (FAL<t)—[P] [up-to]

Intuitively, FF — [P] expresses that whenever a pattern given by the formula F'
is observed, it will be “followed by” an interval where P holds. In the “leads-to”
form the pattern is required to have a length ¢ and in the “up-to” form it is
bounded by a length “up to” t.

In this paper we also consider variants of the above formulae where we check
an event ev by counting its number of occurrences:

F % G==FA[ct(ev) = n] - G A [ct(ev) > n]
ev
For the cross controller we require for example the progress constraint

[en(assigned)] SN [true]

assigned

stating that whenever the communication assigned is enabled it has to occur
within 1 second. As an example for a stability constraint consider the DC formula

[— en(setlight.red)] ; [en(setlight.red))] = [en(setlight.red)]

6 Jochen Hoenicke and Ernst-Riidiger Olderog

stating that the setlight.red communication should stay enabled for at least 4
seconds before it can actually occur.

The basic building block in our combined formalism CSP-OZ-DC is a class.
Its syntax is as in CSP-OZ [8,9] except for the new DC part: see Fig. 3 for
the complete specification of the CrossController class. First, the communica-
tion channels of the class are declared. Every channel has a type restricting the
values that it can communicate. There are also local channels that are visible
only inside the class and used for the interaction of the CSP, Z and DC parts.
Second, the CSP part follows; it is given by a system of (recursive) process equa-
tions. Third, the Z part is given which itself consists of the state space, the Init
schema, and communication schemas specifying how the state changes when the
corresponding communication event occurs. Finally, below a horizontal line the
DC part is stated.

To describe architectures as in Fig. 2 classes can be combined into larger
specifications by CSP operators like parallel composition, hiding and renaming.

3 Semantics

Each class of a CSP-OZ-DC specification denotes a time dependent process. In
this section we describe how to define this process in a transformational way.

3.1 Semantics of the constituents

We begin by recalling the semantic domains of the constituent specification
techniques. The standard semantics of untimed CSP is the FD-semantics based
on failures and divergence [30]. A failure is a pair (s, X) consisting of a finite
sequence or trace s € seq Comm over a set Comm of communications and a so-
called refusal set X € P Comm. Intuitively, a failure (s, X') describes that after
engaging in the trace s the process can refuse to engage in any of the commu-
nications in X . Refusal sets allow us to make fine distinctions between different
nondeterministic process behaviour; they are essential for obtaining a compo-
sitional definition of parallel composition in the CSP setting of synchronous
communication when we want to observe deadlocks. Formally, we define the sets

Traces == seq Comm and Refusals == P Comm,
Failures == Traces X Refusals.

A divergence is a trace after which the process can engage in an infinite sequence
of internal actions. The FD-semantics of CSP is then given by two mappings

F : CSP — P Failures and D : CSP — P Traces.

For a CSP process P we write FD[P] = (F[P] , D[P]). Certain well-formedness
conditions relate the values of F and D (see [30], p.192). The FD-semantics

Combining Specification Techniques for Processes, Data and Time

Track == 0..1

Color ::= off | yellow | red

UpDown ::= up | down

__CrossController

chan set, clear, passed, secured : [t7 : Track)]

chan setlight : [color! : Color]

chan setgate : [status! : UpDown)|

chan getgate : [status? : UpDown]

local_chan assigned, free, wait

main = assigned — setlight!yellow — setlight!red

— setgate!down — getgate.down — Secure

Secure = secured?t — Secure
O free — setgate!up — setlight!off — getgate.up
— watt — main

_Init _com_secured
r: P Track r=o t? . Track
_com.set ____ _comclear _________ |t?7€T
A(r) A(r)
t? : Track t? : Track
_com_passed
t2dr t?er A(r)
r=ruJ{t?} r=r\{t?} t? : Track
tter
_com_assigned _com_free r=r\{t?}
r#£ O r=o

([en(assigned)] asﬁed [true]) A ([en(free)] leeg [true])

[en(setlight.yellow)] LN [true]

setlight.yellow
[— en(setlight.red)] ; [en(setlight.red)] = [en(setlight.red)]

[en(setlight.red)] 2, [true]
setlight.red
<1

[— en(setlight.off)] ; [en(setlight.off)] = [en(setlight.off)]
[en(setlight.off)] —= [true]

setlight.off
[— en(setgate.down)] ; [en(setgate.down)] =2 [en(getgate.down)]
[en(setgate.down)] N [true|

setgate.down

[en(setgate.up)] - [true]
setgate.up

[en(wait)] ; [en(wait)] = [en(wait)]

[en(wait)] %tt) [true]

Fig. 3. A multi-track level crossing

8 Jochen Hoenicke and Ernst-Riidiger Olderog

induces a notion of process refinement denoted by C ... For CSP processes P
and @ this relation is defined as follows:

PLCyp @ iff F[P]2 F[Q] and D[P] 2 D[Q]

Intuitively, P C r, @ means that @ refines P, i.e. () is more deterministic and
more defined than P.

Instead of the negative information of refusal sets one can also use positive
information about the future process behaviour in terms of so-called acceptance
sets. For a trace s an acceptance set A € P Comm describes a set of communi-
cations that are possible after s. The set of all initial communications after s is
the largest acceptance set after s. Acceptance sets are due to Hennessy and De
Nicola [15,25] who developed an approach to testing of processes that resulted in
a process model equivalent to the failures divergence model but with acceptance
sets instead of refusal sets. Acceptance sets satisfy certain closure properties (see
[15], p.77). For example, they are closed under union. Formally, let

Acceptances == P Comm
and A be the process semantics
A : CSP — P(Traces x Acceptances)

based on acceptance sets instead of refusal sets. AD-semantics is the process
semantics based on A and D. We write AD[P] = (A[P] , D[P]) for a CSP
process P. Then the following proposition on process refinement can be proved:

Proposition 1. P C,p, Q iff A[P] 2 A[Q] and D[P] 2 D[Q]

Thus we do not lose any process information by taking acceptance sets instead
of refusal sets. Since for our approach to verification will be based on acceptance
sets, we shall represent here the semantics of untimed CSP on A and D.

Object-Z (OZ) describes state spaces as collections of typed variables, say
of type D,, and their possible transformation with the help of action predicates
A(xz, 2", for example 2’ > x 4+ 1, where the decorated version z’ represents the
value of z after the transformation. The language comes with the usual notion
of data refinement [39)].

Duration Calculus (DC) specifies properties of observables obs interpreted
as finitely varying functions of the form obsz : Time — D for a continuous
time domain T'me and a data domain D. Finitely varying means that obsz can
assume only finitely many different values within a finite time interval [12]. When
modelling real-time systems in DC, refinement boils down to logical implication.

3.2 TUntimed semantics of CSP-OZ classes

The untimed semantics of the combination CSP-OZ is defined in [8,9]. The idea
is that each CSP-OZ class denotes a process in the semantic model of CSP. This

Combining Specification Techniques for Processes, Data and Time 9

is achieved by transforming the Z part of such a class into a CSP process that
runs in parallel and communicates with the CSP part of the class.
Consider a CSP-OZ class

U

I [interface]
L [local channels]
P [CSP part]
Z [Z part]

also written horizontally as U = spec I L P Z end with a Z part of the form

A
st [state space]
Init(st) [initial condition]

...com_c(st,in?, out!, st’)...
[one communication schema for each cin | or L]

where the notation com_c(st, in?, out!, st’) indicates that this communication
schema relates the state st to the successor state st’ and has input parameters
in? and output parameters out!.

The Z part of the class is transformed into a CSP process ZMain defined
by the following system of (parametrised) recursive equations for ZPart using
(indexed) CSP operators for internal choice (M) and alternative composition (0O):

ZMain = ZPart(st)

st With Init(st)

ZPart(st) = L] cin I or L; in?: Inputs(c)

with 3 out' Outputs(c); st’ e com_c(st,in?, out!, st”)

M

out! : Outputs(c); st c.in?.out! — ZPart(st")

with com_c(st, in?, out!, st’)

Informally, ZMain can start in any state st satisfying Init(st). Then ZPart(st)
is ready for every communication event c.in?.out! along a channel ¢ in I or L
where for the input values in? the communication schema com_c(st, in?, out!, st’)
is satisfiable for some output values out! and successor state st’. For given input
values in? any such out! and st’ can be internally chosen to yield c.in?.out! and
the next recursive call ZPart(st’). Thus input and output along channels ¢ are
modelled by a subtle interplay of the CSP alternative and choice.
ZMain runs in parallel with the explicit CSP process P of the class:

procy = P || Events(I U L) |] ZMain

Here the parallel composition synchronises on all events in I and L. In [8,9] the
semantics of the class U is then defined by

FD[U] = FD[procy \ Bvents(L)]

10 Jochen Hoenicke and Ernst-Riidiger Olderog

where all events along local channels L are hidden. Hiding in untimed CSP makes
communications occur autonomously without delay. Thus hiding can cause non-
determinism and divergence.

By the above process semantics of CSP-OZ, the refinement notion C ., is
immediately available for CSP-OZ. One of our guidelines for combining spec-
ification techniques is refinement compositionality, i.e. refinement of the parts
should imply refinement of the whole. For CSP-OZ this is shown in [9]:

Theorem 1. Process refinement Py C rp, Py implies refinement in CSP-OZ:
spec [L Py Zend L, specl L Py Z end

Data refinement Zy Tp Zz for a refinement relation R implies refinement in
CSP-0Z:

spec I L P Zyend L, , specl L P Z;end

3.3 Timed semantics of CSP-OZ-DC classes

The semantic idea of the combination CSP-OZ-DC is that each class denotes a
timed process. To this end, we lift the semantics of CSP and OZ onto the level
of time dependent observables. In the timed setting the behaviour of internal
actions has to be studied carefully. We distinguish between internal 7 actions
inherited form the untimed CSP setting and internal wait actions induced by
hiding communications with a certain timing behaviour. Whereas internal 7
actions do not take time and can thus be eliminated in accordance with the
FD-semantics, possibly inducing nondeterminism or divergence, internal wait
actions let time pass before the next visible communication can occur. Whereas
an infinite sequence of 7 actions is equivalent to divergence, an infinite sequence
of wait actions is equivalent to deadlock.

For simplicity, we do not consider the case where the untimed part diverges.
Thus the semantics of CSP-OZ-DC will associate with each specification of the
combined language a timed process consisting of a set of time dependent traces
and time dependent acceptances:

Arime : CSP-OZ-DC — P((Time — Traces) x (Time — Acceptances))

For a CSP-OZ-DC specification S its semantics A i [S] will be described by a
DC formula in the observables ¢r and Acc interpreted as finitely varying functions

trr @ Time — Traces and Accr : Time — Acceptances.

This DC formula denotes the set of all interpretations of ¢r and Acc that make
the formula true; thus it will be identified with A 7y, [S]-

We explain the details first for a CSP-OZ-DC class C', which augments the
untimed CSP-OZ class U by an additional timing part T expressed in DC:

Combining Specification Techniques for Processes, Data and Time 11

_C
U [untimed components]
T [DC part]

We shall also expand C horizontally into
C=specl L PZ T end.

The semantics of C' is obtained by taking the CSP process procy defined for the
CSP-0OZ class U but interpreting it in the setting of the time dependent observ-
ables tr and Acc, and then conjoining it with the time dependent restrictions
expressed in the DC part T'. Since procy is still an untimed process, its semantics
in terms of ¢r and Acc will allow any time dependent behaviour. More precisely,
given the untimed acceptance semantics of procy assumed to be divergence free,

Alprocy] : P(Traces x Acceptances) with D[procy] = &,

we define its timed semantics as the DC formula
Arime[procy] < Fu AN Fi A Fa A Fs

in the observables tr and Acc with subformulae Fy, F1 — F3 given as follows:
Fu : Of(tr, Ace) € Alprocy]]

requires that the values of the observables tr and Acc are taken from the untimed
acceptance semantics of procy.

Fr: [V [tr=7; true
requires that initially the trace is empty.
Fo :OVh K (b0 A[tr="0]; [tr=11)=3c,veh’ =h" {cv)

requires that the trace can only grow and that one communication event occurs
at a time. The modality O quantifies over all subintervals of a given time in-
terval, and ; is the chop operator of interval temporal logic used in DC [40,12].
The subformula [¢tr = h]; [tr = '] holds in any time interval where on a first
non-point interval ¢r assumes the value 2 and on a second non-point interval the
value 1'. By Fo, h’ can differ from & only by one communication event. Together
with the restriction to finite variability, we thus require that only finitely many
communication events occur within a finite time interval and that one commu-
nication event occurs at a time. Consequently in our semantics a non-zero time
passes between successive events. Finally,

F3:0OVh,c,uoe([tr="r]; [tr=h" (cv)] =
([tr = h] A (true; [c.v € Accl)); [tr =h " {c.v)])

12 Jochen Hoenicke and Ernst-Riidiger Olderog

requires that every communication c.v can occur only with prior appearance in
an acceptance set.

Only the DC part T can actually restrict this behaviour in a time dependent
manner. To this end, T has limited access to the observables tr and Acc via
the expressions ct(X) and en(X) where X is a set of communication events. By
definition,

‘ ct: P Comm — N
‘ VX :PComm e ct(X)=#(tr > X)

Thus c¢t(X) counts the number of occurrences of events from X in the trace tr.
Next

‘ en : P Comm — B

‘ VX :PCommeen(X)< X C Acc

Thus en(X) records whether all events from X can be accepted next. It is
for this definition of enabledness that acceptance sets are easier to use than
refusals. This motivated our choice of the semantic representation. For a single
communication event c.v we write ct(c.v) and en(c.v) instead of ct({c.v}) and
en({c.v}). Using these expressions we can specify timing constraints for the
visible communications.

Altogether the semantics of the timed class C' is given by the formula

Arime[C] < hide Le (Fy AF1 AFa AFs A T)

where all communications along the local channels in L are hidden. For a DC
formula F' in the observables tr and Acc we define

hide L e F < Jtry, Acco e (([| V [tr = squash(try & L) A Ace = Acep \ L) A
Fltrg/tr, Acco/ Acc))
Thus hide L e F'is a DC formula in the observables ¢r and Acc, and their values

are linked via the substitution F[try/tr, Acco/Acc] to the original values of these
observables in F. It describes the timed semantics of the CSP hiding operator.

3.4 Timed Semantics of System Specifications

System specifications S are obtained by combining class specifications with the
CSP operators for parallel composition, hiding and renaming. Thus a typical
specification could be of the form

S=(Ci[R1] || G[R2])\ L.

The parallel composition || can be modelled by an alphabetised parallel 4 ||
where A and B are the sets of interface events of C)[R1] and C3[Rz]. For DC

Combining Specification Techniques for Processes, Data and Time 13

formulae F} and F5 in the observables ¢r and Acc the semantics of the parallel
composition can be expressed, similarly to [33], by the following DC formula:

F1 allg Fo < 3 try, tra, Acco, Acey, Aces @
(([TV treseq(AUB)Atr] A=1try ANtr | B=tra A
AccoN(AUB) =@ A
Acc = (Acey N AccaNANB)U
(Acer \ B)U (Acea \ A)]) A
Fy[try/tr, Acey) Acc] N Faltra/tr, Acca/ Acc))

Hiding, denoted by \ L, is used to make the communication events in L internal.
Semantically, hiding is defined using the operator hide L e F' introduced above.
Renaming, denoted by [R] for a relation R between events, is used to rename
communication events. The semantic definition is straightforward.

The refinement relation between classes or between specifications of the same
interface is modelled by (reverse) logical implication in the semantic domain: a
class Cy refines a class C, abbreviated by

Cy C Oy, if Apime[Co] = Arime[Ci]
holds. We show that refinement compositionality holds also for CSP-OZ-DC.

Theorem 2. (a) Process refinement P, Erp P2 implies refinement in CSP-
0Z-DC: specI L Py Z Tend L specl L Py 7 T end

(b) Data refinement Zy C Zy for a refinement relation R implies refinement in
CSP-OZ-DC: specI L P Z Tend L specl L P Zy T end

(¢) Time constraint refinement To = Ty implies refinement in CSP-OZ-DC:
spec [LPZ Tyend L specl L P Z T5 end

Proof. Statements (a) and (b) are immediate consequences of Theorem 1 and
the monotonicity of Fy w.r.t. refinements of the untimed class U. Statement
(c) follows from the conjunctive form of Am.[C]. O

By this theorem, it is possible to reuse verification techniques for the com-
ponents of a CSP-OZ-DC specification to prove refinement results for the whole
specification. However, when the desired property of the whole specification de-
pends on the semantic interplay of the components, more sophisticated verifica-
tion techniques are needed. In the following we develop one such a technique.

4 Verification

We exploit the above style of semantics for a partially automatic verification of
properties of CSP-OZ-DC specifications that satisfy the following restrictions:
the CSP part represents a finite-state process, the OZ data types are finite, and
the DC part obeys certain patterns described below. Then the idea is as follows.
Given a class C =spec I L P Z T end we proceed in four steps:

14 Jochen Hoenicke and Ernst-Riidiger Olderog

(1) Represent the untimed process U = spec I L P Z end in FDR-CSP, the
input language of the FDR model-checker [29,11] for CSP.

(2) Use the FDR model-checker to output a transition system TSy for U with
acceptance sets.

(3) Transform this transition system 7Sy into a timed automaton A¢ repre-
senting all the timing restrictions of the DC semantics.

(4) Verify properties of the class C by applying the model-checker UPPAAL [1]
to Ac.

Step(1) follows an approach of [10]. While steps (1) and (4) currently require
user interaction, steps (2) and (3) proceed fully automatic.

The DC patterns for timing restrictions that can be handled in step (3)
are new variants of the DC implementables [27] introduced next. An event set
X appearing as a subscript of the chop operator or the followed-by operator
(cf. section 2) indicates that an event from X happens at the corresponding
chop point. Formally:

F 3 G==(F Afet(X) =n]); (G Afet(X) > n])

F _;> G==(FA[ct(X)=n]) -5 (G A [ct(X) > n])

The following formula states that while a stability constraint applies, events from
the set X must not happen:

F % G == (FA[ct(X)=n]) =5 (G A [et(X) = n])

A tool for step (3) developed by C. Ohler supports the following DC patterns:

(P15 [QT =+ [R] [chop-leads-to]
(P15 1Q1 =) [R] [chop-up-to
[Q] —;> [R] [leads-to]
[Q] % [R] [up-to]

Here t € Time and P, @), R are state assertions. The event sets X, Y are optional
and can be omitted. Also the upper bound ¢ in the up-to formulas can be omitted.

The tool implements an algorithm that applies given DC formulae of the
above patterns one after the other to transform the transition system produced
in step (2) into a timed automaton. As an example we show in Fig. 4 the pseudo
code for the leads-to pattern. In step 1 the algorithm adds a new clock to measure
the time the transition system stayed in a @-state without executing an event
from X. While being in a @-state this clock must not grow beyond ¢ because
otherwise the DC formula would be violated. Therefore we add in step 2 a
corresponding state invariant to all @)-states. The clock needs to be reset when
a (Q-state is entered from outside (step 3.a) or when an event from X occurs

Combining Specification Techniques for Processes, Data and Time 15

Pattern: [Q] TZ) [R]
1. Introduce new clock c
2. To all states s € () add invariant ¢ < ¢
3. For each tramsition #r : s — s do:
a. if s € Q, s € Q
add reset ¢ := 0 to tr
b. if s € Q, s € Q, eve X
add reset ¢ := 0 to ir
c.if s € @, (s € RV ew ¢ X)
add guard ¢ < ¢ to ir

Fig. 4. Algorithm for the leads-to pattern

and the control stays in @ (step 3.b). All outgoing events that do not lead into
an R-state or do not communicate an event from X must happen before time ¢
has elapsed. Therefore a corresponding guard is added in step 3.c.

Besides enriching the transition system generated by FDR our tool also adds
a timed supervisor automaton running in parallel. The supervisor serves two
purposes: first, it ensures that — in agreement with the DC semantics defined in
section 3.3 — a non zero time passes between successive events, and second, it
hides the local channels that should not be visible to other processes.

4.1 Case Study

We now apply the above verification procedure to the case study introduced
in section 2. The result of the manual step (1) is given in Fig. 5. It shows the
FDR-CSP specification using the input language of the FDR model-checker and
representing the CSP and Z part of the combined cross controller specification
in Fig. 3. The representation of the constant declaration, the channel declaration
and the CSP part is straightforward. Only at a few locations the syntax needs
to be adapted to FDR. The transformation of the Z part into a CSP process
ZPart was described in section 3.2: ZPart takes the complete Z state, here r,
as a parameter. It offers an external choice over all communications that had
corresponding Z schemas in the original specification. For readability we applied
some simplifications to this part. The CSP and Z part are put in parallel and
synchronize over their common alphabet.

The next two steps are performed automatically by our tool. In step (2) it
uses the FDR model-checker to create a compact finite transition system from
the specification of Fig. 5. The result is sketched in Fig. 6. The graph contains
40 states and 160 transitions. To make it more readable not all transitions are
labelled. The whole graph is shaped as a cycle that corresponds to the cyclic
behaviour of securing the crossing and releasing it.

Every CSP state is expanded into four substates corresponding to the four
possible values of the variable r in the Z part. A closer view of the top left part of
the graph is given in Fig. 7. The passed transitions are still omitted; they are in
the same places as the clear transitions. Note that the initial state (the top most

16 Jochen Hoenicke and Ernst-Riidiger Olderog

-- Constants

Track = {0..1}
datatype Color
datatype UpDown

off | yellow | red
up | down

-- Channels

channel set, clear, secured, passed : Track
channel setlight : Color
channel setgate, getgate : UpDown

channel assigned, free, wait

-- Class CrossController
CrossController =
let
-- CSP part
main = assigned -> setlight!yellow -> setlight'red
-> setgate!down -> getgate!down -> Secure
Secure = secured?t -> Secure
[1 free -> setgate!up -> setlight!off -> getgate!up
-> wait -> main

-- Z part
ZPart(r) =
([l t : diff(Track, r) @ set.t -> ZPart(union(r, {t})))
[0 ([1t:r@clear.t -> ZPart(diff(r, {t})))
[0 ([0t :r@passed.t -> ZPart(diff(r, {t})))
[1 ([0 t: r @ secured.t -> ZPart(r))

[1 r !'= {} & assigned -> ZPart(r)
[0 r=={ & free -> ZPart(r)

within -- Put CSP and Z part in parallel
main [| {| secured, assigned, free |} |] ZPart({})

Fig. 5. FDR-CSP specification for the cross controller

in the detailed graph) has no outgoing assigned transition. This is because the Z
part blocks this transition when r is empty. Since all transitions are deterministic
in our case study, every state has only one acceptance set, which contains all
outgoing events.

In step (3) the DC formulae are applied one after the other. For each DC
formula a new clock is introduced and new guards and resets are added to the
transition. The tool starts with the first DC formula

[en(assigned)] LN [true] .

assigned

This is an instance of the leads-to pattern. The states where en(assigned) holds
are only the three states in Fig. 7 that have an outgoing assigned transition.

Combining Specification Techniques for Processes, Data and Time

assigned

S
) .\Z(o/

S \
setlight.yellow ‘\
]

o

setlight.red setgate.down

Fig. 6. Transition system generated by FDR

wait
wait

wait

4 r=/{1,2 Y

assigned assigned

assigned
14

Fig. 7. Detailed view of the transition system

17

18 Jochen Hoenicke and Ernst-Riidiger Olderog

Thus only the transitions depicted in the detailed view are changed. Applying
the algorithm in Fig. 4 yields the timed automaton depicted in Fig. 8.

wat

c =0
wagl
c =0
wasl
4 nv e <t y
assigned assigned
assigned |
y

Fig. 8. Timed automaton resulting from the first DC formula

After applying all DC formulae step (3) terminates with a timed automaton
representing the complete CSP-OZ-DC class. Altogether the algorithm adds 12
clocks and a lot of resets and guards. So the complete graph is not easily readable
but we can verify that certain properties hold with the model-checker UPPAAL.

4.2 Model-Checking

We consider the following real-time property: Whenever a train requests a track
and it does not clear the request or passes the crossing it can get a secured
communication within a certain time ¢. We wish to determine the exact value
of t experimentally.

To verify this property we build a test automaton. This is a small timed
automaton that communicates with the cross controller over some of the channels
we defined in our CSP-OZ-DC specification. As the identity of the track does
not matter, we assume that our test automaton deals with track 0. Therefore
we link it over the set.0, clear.0, passed.0 and secured.0 communication events.
We instruct the tool to hide all other communications, so that they can occur
at any time.

The test automaton is given in Fig. 9. In its initial state idle the automaton
is able to communicate any event. When communicating set.0 it resets a clock
c_waiting and switches to the busy state. In this state it waits until it can

Combining Specification Techniques for Processes, Data and Time 19

communicate secured.0. Then it returns to the idle state. This automaton is put
in parallel with the cross controller.

set.0, c_waiting == 0
clear.0
passed.0
secured.0 idle busy

secured.0

Fig. 9. Test automaton

We ask UPPAAL whether for all reachable states the test automaton is in the
idle state or its clock is smaller than ¢, where ¢ is an integer constant. This query
can be expressed in the UPPAAL syntax as follows:

Property; < A O TestAutomaton.idle or c_waiting < t

Applying this to the cross controller, UPPAAL quickly generates a counter exam-
ple showing that the property does not hold. The trace contains the CSP events
so it is possible to compare it to the CSP-OZ-DC specification. It turns out that
the property is violated because we do not have enough progress conditions.

We need the assumptions that the gate will actually close or open within a
certain time bound, say 15 seconds, and that the train will actually receive the
secured communication within a certain time. Note that these are assumptions
about the environment of the controller. However, for simplicity we add them
to our specification. The formulae we add are:

[en(getgate.down)] 23, [true]

getgate.down
15

[en(getgate.up)] — [true]
getgate.up

[en(secured.0)] SN [true]
secured.0

Now we can run UPPAAL again to check Property; for different values of t. If
we choose a value for ¢ smaller than 75 UPPAAL finds a counter example within
a few seconds. For ¢ = 75 the property is satisfied.

4.3 Experimental Results

The table in Fig. 10 gives some timings for these steps. The times were measured
on an UltraSPARC-II with 296 MHz. Steps (2) and (3) of the verification pro-
cedure are quite fast. For the cross controller step (2) needs less than a second,
and step (3) needs 1.8 seconds to apply the twelve DC formulae from the original
specification plus the three formulae from the environment to the transition sys-
tem generated by step (2). Model-checking in step (4) is most time consuming
when no counter example exists, this is the reason for the difference in the last
two columns. For ¢ = 74 there is a counter example, but for ¢ = 75 UPPAAL
has to investigate the complete state space.

20 Jochen Hoenicke and Ernst-Riidiger Olderog

Consider now a larger system with more tracks. Adding a track doubles the
7 state space and thus the resulting automaton states, and it yields almost three
times as many transitions. As shown in Fig. 10, the steps take more time by a
factor between two and three.

Number of| step (2) | step (3) step (4) step (4)
tracks ‘ with ¢ = 74‘ with ¢ =75
2 0.3 1.8 16.4 1662
3 0.4 3.6 43.5 4379
4 0.6 10.4 101.5 10979

Fig. 10. Verification time (in seconds).

5 Conclusion

Related work. Closest to our way of combining specification techniques is Real-
Time Object-Z [37]. Classes in this combination look similar to ours but lack
the CSP and DC part. As we have seen in the case study, the CSP part is
convenient for specifying sequencing constraints on the communications events.
Furthermore, CSP offers parallel composition and hiding that can well be used
for the structuring of larger CSP-OZ-DC specifications. In Real-Time Object-Z
the timing properties are specified in an interval-based set-theoretic notation
[7]. We also use an interval-based approach but in terms of the well researched
Duration Calculus [40,12]. The semantics of Real-Time Object-Z is given in
terms of time dependent traces [37] whereas we consider also time dependent
acceptances due to the presence of CSP.

Another related work is TCOZ, a combination of Timed CSP [3] with Object-
Z [21,22]. Obviously, DC is not involved in this combination. So the constructs
of Timed CSP are used to specify time dependencies between communications.
Besides this difference, the semantic integration of CSP with Object-Z differs
from ours. In TCOZ an Object-Z operation schema denotes a process whereas
in CSP-OZ-DC it specifies the effect of a communication event on the state.

Verification. We have shown how to exploit the transformational semantics
of CSP-OZ-DC for a partially automatic verification of properties of combined
specifications. To this end, we have developed a novel, systematic transformation
of CSP-OZ-DC classes into timed automata that can be model-checked by the
UPPAAL tool. This poses the question whether the timed automata semantics
produced by the algorithm described in section 4 is equivalent to the DC se-
mantics of section 3. A proof of such an equivalence is left for future work. We
notice, however, that similar equivalence proofs between timed automata and
DC semantics are given in [5].

Perspectives. Automatic verification works only for finite data types in the Z
part and certain patterns of timing constraints in the DC part. For infinite data
and more general DC formula one will need interactive verification techniques.

Combining Specification Techniques for Processes, Data and Time 21

In this paper the DC part restricts only the timing of the communications.
In general one would also like to restrict the timed behaviour of the class state.
To this end, we pursue the idea that the current state of the Z part is made
observable by a special communication.

Acknowledgement. Christian Ohler implemented the algorithm transforming
FDR transition systems and DC patterns into UPPAAL timed automata.

References

1. J. Bengtsson, K.G. Larsen, F. Larsson, P. Pettersson, and Wang Yi. Uppaal — a tool
suite for automatic verification of real-time systems. In R. Alur, T.A. Henzinger,
and E.D. Sonntag, editors, Hybrid Systems III — Verification and Control, volume
1066 of LNCS, pages 232—243. Springer, 1997.

2. G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Modeling Language User
Guide. Object Technology Series. Addison Wesley, 1999.

3. J. Davies and S. Schneider. A brief history of Timed CSP. Theoretical Computer
Science, 138:243-271, 1995.

4. H. Dierks. PLC-Automata: A New Class of Implementable Real-Time Automata.
Theoretical Computer Science, 253(1):61-93, 2001.

5. H. Dierks, A. Fehnker, A. Mader, and F.W. Vaandrager. Operational and Logical
Semantics for Polling Real-Time Systems. In A.P. Ravn and H. Rischel, editors,
FTRTFT’98, volume 1486 of LNCS, pages 29-40. Springer, 1998.

6. H. Dierks and J. Tapken. Modelling and verifying of a ‘cash point service’ using
MOBY /PLC. Formal Aspects of Computing, 12:220-221, 2000.

7. C.J. Fidge, I.J. Hayes, A.P. Martin, and A.K. Wabenhorst. A set-theoretic model
for real-time specification and reasoning. In J. Jeuring, editor, Mathematics of
Program Construction, volume 1422 of LNCS, pages 188-206. Springer, 1998.

8. C. Fischer. CSP-OZ: A combination of Object-Z and CSP. In H. Bowman and
J. Derrick, editors, Formal Methods for Open Object-Based Distributed Systems
(FMOODS’97), volume 2, pages 423-438. Chapman & Hall, 1997.

9. C. Fischer. Combination and Implementation of Processes and Data: From CSP-
OZ to Java. PhD thesis, Bericht Nr. 2/2000, University of Oldenburg, April 2000.

10. C. Fischer and H. Wehrheim. Model-checking CSP-OZ specifications with FDR. In
K. Araki, A. Galloway, and K. Taguchi, editors, Integrated Formal Methods, pages
315-334. Springer, 1999.

11. Formal Systems (Europe) Ltd. Failures-Divergence Refinement: FDR 2, Dec. 1995.

12. M.R. Hansen and C. Zhou. Duration calculus: Logical foundations. Formal Aspects
of Computing, 9:283-330, 1997.

13. J. He, C.A.R. Hoare, M. Frianzle, M. Miiller-Olm, E.-R. Olderog, M. Schenke, M.R.
Hansen, A.P. Ravn, and H. Rischel. Provably correct systems. In H. Langmaack,
W.-P. de Roever, and J. Vytopil, editors, Formal Techniques in Real-Time and
Fault Tolerant Systems, volume 863 of LNCS, pages 288-335. Springer, 1994.

14. S. Heilmann. Proof Support for Duration Calculus. PhD thesis, Dept. Inform.
Technology, Tech. Univ. Denmark, June 1999. Tech. Report IT-TR: 1999-030.

15. M. Hennessy. Algebraic Theory of Processes. MIT Press, 1988.

16. C.A.R. Hoare. Communicating sequential processes. CACM, 21:666—677, 1978.

17. C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.

22

18.
19.

20.

21.

22.

23.

24.
25.

26.

27.

28.

29.

30.
31.

32.

33.

34.

35.

36.
37.

38.

39.

40.

Jochen Hoenicke and Ernst-Riidiger Olderog

C.A.R. Hoare and J. He. Unifying Theories of Programming. Prentice Hall, 1997.
Kolyang. HOL-Z — An Integrated Formal Support Environment for Z in Is-
abelle/HOL. PhD thesis, Univ. Bremen, 1997. Shaker Verlag, Aachen, 1999.
D.G. Luenberger. Introduction to Dynamic Systems. Theory, Models € Applica-
tions. Wiley, 1979.

B.P. Mahony and J.S. Dong. Blending Object-Z and Timed CSP: an introduc-
tion to TCOZ. In K. Futatsugi, R. Kemmerer, and K. Torii, editors, The 20th
International Conference on Software Engineering (ICSE’98), pages 95-104. IEEE
Computer Society Press, 1998.

B.P. Mahony and J.S. Dong. Sensors and actuators in TCOZ. In J.M. Wing,
J. Woodcock, and J. Davies, editors, FM’99 — Formal Methods, volume 1709 of
LNCS, pages 1166-1185. Springer, 1999.

B. Moszkowski. A temporal logic for multi-level reasoning about hardware. IEEE
Computer, 18(2):10-19, 1985.

B. Moszkowski. Executing Temporal Logic Programs. Cambridge Univ. Press, 1986.
R. De Nicola and M. Hennessy. Testing equivalences of processes. Theoretical
Computer Science, 34:83-133, 1983.

E.-R. Olderog, A. P. Ravn, and J. U. Skakkebaek. Refining system requirements to
program specifications. In C. Heitmeyer and D. Mandrioli, editors, Formal Methods
for Real-Time Computing, pages 107-134. Wiley, 1996.

A.P. Ravn. Design of embedded real-time computing systems. Technical Report
ID-TR: 1995-170, Tech. Univ. Denmark, 1995. Thesis for Doctor of Technics.
A.P. Ravn, H. Rischel, and K.M. Hansen. Specifying and verifying requirements
of real-time systems. IEEE Trans. Software Engineering, 19(1):41-55, 1993.
A.W. Roscoe. Model-checking CSP. In A.W. Roscoe, editor, A Classical Mind —
Essays in Honour of C.A.R.Hoare, pages 353—-378. Prentice-Hall, 1994.

A.W. Roscoe. The Theory and Practice of Concurrency. Prentice-Hall, 1997.

M. Saaltink. The Z/EVES system. In J. Bowen, M. Hinchey, and D. Till, editors,
ZUM’97, volume 1212 of LNCS, pages 72—88. Springer, 1997.

T. Santen. A Mechanized Logical Model of Z and Object-Oriented Specification.
PhD thesis, Tech. Univ. Berlin, Juli 1999. Shaker Verlag, Aachen, 2000.

M. Schenke and E.-R. Olderog. Transformational design of real-time systems —
Part 1: from requirements to program specifications. Acta Inform., 36:1-65, 1999.
B. Selic and J. Rumbaugh. Using UML for modeling complex real-time systems.
Technical report, ObjecTime, 1998.

J.U. Skakkebak. A Verification Assistent for a Real-Time Logic. PhD thesis, Dept.
Comp. Sci., Tech. Univ. Denmark, Nov. 1994. Tech. Report ID-TR: 1994-150.

G. Smith. The Object-Z Specification Language. Kluwer Academic Publisher, 2000.
G. Smith and I. Hayes. Towards real-time Object-Z. In K. Araki, A. Galloway,
and K. Taguchi, editors, Integrated Formal Methods, pages 49-65. Springer, 1999.
J.M. Spivey. The Z Notation: A Reference Manual. Prentice-Hall International
Series in Computer Science, 2nd edition, 1992.

J. Woodcock and J. Davies. Using Z — Specification, Refinement, and Proof.
Prentice-Hall, 1996.

C. Zhou, C.A.R. Hoare, and A.P. Ravn. A calculus of durations. Information
Processing Letters, 40(5):269-276, 1991.

	Combining Specification Techniques for Processes, Data and Time

