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Abstract. CSP-OZ-DC is a new combination of three well researched &tethniques
for the specification of processes, data and time: CSP [Hb885], Object-Z [Smith
2000], and Duration Calculus [Zhaat al.1991]. This combination is illustrated by spec-
ifying the train controller of a case study on radio cont&dltailway crossings. The tech-
nical contribution of the paper is a smooth integration @f timderlying semantic models
and its use for verifying timing properties of CSP-OZ-DC @fieations. This is done by
combining the model-checkers FDR [Roscoe 1994] for CSP dPBEAAL [Bengtssoret
al. 1997] for timed automata with a new tofdu that transforms FDR transition systems
and certain patterns of Duration Calculus formulae inteetiautomata. This approach is
illustrated by the example of a vending machine.
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1. Introduction

Complex computing systems exhibit various behaviouragéetspsuch as commu-
nication between components, state transformation insidgeponents, and real-
time constraints on the communications and state changasnaF specification
techniques for such systems have to be able to describecal thspects. Unfor-
tunately, a single specification technique that is wellezlifor all these aspects
is not yet available. Instead one finds various specialisedniques that are very
good at describing individual aspects of system behavidhis observation has
led to research into the combination and semantic integrati specification tech-
niques. In this paper we combine three well researched fggmn techniques:
CSP, Object-Z and Duration Calculus.

Communicating Sequential Proces§€SP) were originally introduced by Hoare
[1978, 1985]. The central concepts of CSP are synchronomsncmication via

*A preliminary version of this article, with different exatep, appeared as the conference paper
[Hoenicke and Olderog 2002] published by Springer-Verlais research was partially supported
by the DFG under grant Ol/98-2.
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channels between different processes, parallel composaind hiding of internal
communication. For CSP a rich mathematical theory comqgisiperational, de-
notational and algebraic semantics with consistency prbefs been developed
[Roscoe 1997]. Tool support comes through the FDR modeatkere[Roscoe
1994]. The name stands for Failure Divergence Refinementefacs to the stan-
dard semantic model of CSP, the failures divergence moddljta notion of pro-
cess refinement.

Z was introduced in the early 80’s in Oxford by Abrial as a $etetretic and pred-
icate language for the specification of data, state spaakstate transformations.
The first systematic description of Z is [Spivey 1992]. Siticen the language
has been published extensively (e.g. [Woodcock and Da@68]1 and used in
many case studies and industrial projects. In particulachemas and the schema
calculus enable a structured way of presenting large gpaizes and their transfor-
mation. Object-Zis an object-oriented extension of Z [Smith 2000]. It corapsi
the concepts of classes, inheritance and instantiatiomdZQbject-Z come with
the concept of data refinement. For Z there exist proof systemestablishing
properties of specifications and refinements such as Z/E\EaSI{fink 1997] or
HOL-Z based on Isabelle [Kolyang 1997]. For Object-Z typedaiters exist. Ver-
ification support is less developed except for an extensidtQL-Z [Smith et al.
2002].

Duration Calculus(DC for short) originated during the ProCoS (Provably Cor-
rect Systems) project [Het al. 1994] as a new logic and calculus by Zhetial.
[1991] and Hansen and Zhou [1997] for specifying the behavid real-time sys-
tems. Itis based on the notion of an observatiisinterpreted as a time dependent
functionobs; : Time— D for some data domaiD. A real-time system is described
by a set of such observables. This links up well to the matiieaidasis found
in classical dynamic systems theory [Luenberger 1979] anadbles extensions to
cover hybrid systems. Duration Calculus was inspired byabek of Moszkowski
[1985, 1986] on interval temporal logic and thus specifi¢ésriral-based properties
of observables. Its name stems from its ability to specifydbration of certain
states in a given interval using the integral. By choosimgitht set of observables,
real-time systems can be described at various levels ofealisin [see Ravet al.
1993, Olderoget al. 1996, Schenke and Olderog 1999, Dierks 2001]. Verification
support for the general DC is provided by Skakkebask [199dH&ilmann [1999]
using theorem provers, and for a more specialised aplitafi DC by Dierks and
Tapken [2000] using a translation into timed automata fodeh@hecking with
UPPAAL [Bengtssoret al.1997].

It is well known that a consistent combination of differepesification tech-
niques is difficult [Hoare and He 1997]. Very popular is cathe UML, the Uni-
fied Modeling Language [Boocét al. 1999]. It collects all the widespread speci-
fication techniques for object-oriented systems in onedagg. There is even an
extension UML-RT [Selic and Rumbaugh 1998] intended to cogal-time sys-
tems. However, a closer examination shows that this exiansijust able to deal
with reactive systems. A problem with UML is the missing seti@basis for this
huge language. It is still a topic of ongoing research to jpima semantics for
subsets of UML.
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Fig. 1: Case study: Radio controlled railway crossings

We see the best chances for a well founded combination witbifspation tech-
nigues that are well researched individually. As guiddifee good combinations
we propose the following:

o the strengths of the individual specifications techniqiresikl be preserved,
o tools and verification methods should be reusable,
o the semantics of the combination should be easy to undérstan

o different representations should be freely exchangealde,visual vs. tex-
tual.

An example of a clear combination of two specification teghas is CSP-OZ
developed by Fischer [1997, 2000]. In this paper we extend-OZ by the aspect
of continuous real-time. This is done by combining it in aallie way with DC.
The resulting specification language we call CSP-OZ-DC. Jdqer is organised
as follows. Sectior? introduces the main constructs of CSP-OZ-DC. Sec8on
describes the semantics of the combination. Seetiemploys it to specify a train
controller for the safety of railway crossings. Sect®bshows how the semantics
can be utilized for a partially automatic verification of pesties of CSP-OZ-DC
specifications, and applies this approach to a simple vgndiachine. Finally, we
conclude with Sectio®.

2. The Combination CSP-OZ-DC

In this section we introduce the new combined formalism taneples taken from
a case study of radio controlled railway crossings whichag pf the priority
research program “Integration of specification techniguits applications in en-
gineering”! of the German Research Council (DFG), see Eig-he main issue in
this study is to remotely operate points and crossings dm+based communica-
tion while keeping the safety standard.

Fig. 2 surveys the controller architecture we want to specify ia tase study.
The diagram shows several components connected by comationichannels. In
the centre of the diagram is thiin controller whose purposes are to limit the
speed of the train, to decide when it is time to switch poimig secure crossings,
and to make sure that the train does not enter them too edrgpodometerkeeps
track of the speed and position of the train. The position éasared by various
means, e. g. counting the rotations of the wheels. Burielertrack are so-called
balises which are devices with a unique identifier that can be reathbytrain.

1 http://tfs.cs.tu-berlin.de/projekte/indspec/SPP/ind ex.html
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Fig. 2: Controller architecture

With the help of these balises the odometer can determinaltbalute position of
the train.

Thespeed controllesupervises the speed and makes sure that it does not exceed
the limit set by the train controller, otherwise it autorsatiy slows down the train.
When the speed limit is set to zero, the train will break uhtibmes to a safe halt.

The communication with points and crossings is done bydlde controller. As
said above, the communication medium is radio-based. &peaie has to be
taken because radio transmissions are inherently unséafe.sdfety must still be
established under the assumption that no message can sketrad.

2.1 Using CSP

To specify the train controller component several concepist be handled, as
described in the following. The train controller communésawith other compo-
nents, e. g. the radio controller. Most of these commurdoatare initiated by the
train controller itself, e.g. the train controller asks t@ometer for the current
speed and position and sets the new speed limit. But theralssecommunica-
tions initiated externally, e. gecuredTrackElemenivhich is sent when a crossing
affirms that it is safe. These communications can be easitjefienl with CSP.

As an example we can model the loop supervising the speed b@$he fol-
lowing recursive equation:

SuperviseSpeed= getSpeed- getPos
— calcMaxSpeed- setMaxSpeed+ SuperviseSpeed

The symbolé is used instead of an ordinary equals symbol to distinguéttvéen

CSP process equations and Z equations. The process sptwfitise four events
getSpeedgetPos calcMaxSpeedan internal communication) argbtMaxSpeed
are communicated in this order. For simplicity communmatvalues are ignored
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here. This process can then work in parallel with other mses, for instance the
one handling theecuredTrackElement

securedTrackElemehd
— clearDangerPositiohid — SecuredHandler

SecuredHandler

main = SuperviseSpeddSecuredHandler

Note that a value is communicated along the chansetsiredTrackElemerand
clearDangerPosition This value will later be used by the Z part, see below. Re-
ceiving and sending of a value is indicated by the symbolsd? @according to the
CSP conventions.

2.2 Using Object-Z

Thetrack atlascontains a data base with the crossings and points. Thehazsin
to manipulate this data base to remember which track elentenvie already been
switched and which have affirmed their safety. Handling dadzases is easily
done with Object-Z (OZ). Starting from basic typeentifier andPositionwe can
define the track elements (crossings and points) by the Zrszhe

TrackElement
id : Identifier
pos: Position

This schema declares a new data tyipackElement Each element of this type
consists of several components listed inside the schemaBash track element
has a unique identified. There is also a position associated with each track el-
ement, which is the position at which the train must stop ahnot secure it.
The dots indicate that there is more information in the s@hesng. to distinguish
crossings from points and to know in which direction to stvigcpoint.

The track atlas contains information about track elemehtsmaximum speed
for each track segment, and all other information the traads to know about
the track. It is also represented by a Z schema as follows. dEfi@ition of
StaticProfileis not of interest here and is given in SettThe type sedrackElement
denotes finite sequenceshickElemers.

TrackAtlas
|»staticprof : StaticProfile

elems seqTrackElement

For each crossing that is not yet secured the train contriedleps its associated
positions in a setlangerPositions Together with the track atlas this forms the
state space of the train controller. The state space of a &5 @ denoted by an
unnamed schema.
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trackatlas: TrackAtlas
dangerPositions P Position

Initially for every track element in the track atlas the emponding danger po-
sition is set, to make sure that the train cannot pass it. Intl@Znitial state is
described by amnit schema like this:

Init
FdangerPosition& {elem: rantrackatlaselemse elempos}

The set on the right side contains elements of the felemposwhereelemranges
over the elements in the sequernackatlaselems The operator ran is used here
to convert a sequence into the set of its elements.

When a value, i.e. positioidl, is received on channskcuredTrackElementhe
train controller has to remove this position from the setafger positions. The
handling of the communication eveciearDangerPositiohid is done by the CSP
processSecuredHandlerbut we have to link this event with an update of the data
base. This is done by writing a communication schemaliearDangerPosition
i.e. a Z-schema specifying the operation associated wathctimmunication event.

__com_clearDangerPosition
A(dangerPositions
id? : Identifier

dangerPosition's= dangerPosition$
{elem: rantrackatlaselems| elemid = id? e elempos}

The prefixcom_ of the schema name indicates that this is a communicati@nseh
Itis possible to decompose communication schemas intdeeaal effect schemas
[Fischer 2000] but we shall not pursue this here. Thim the first line of the
schema declares that this operation may only chataggerPositions The next
line declares a parametigl, decorated with ? to signify thad is an input param-
eter. Notice that this naming convention of Z correspondslyiwith the naming
conventions of CSP: the output iof along channetlearDangerPositiorsynchro-
nises with the input ofd in the Z schema. In Z the transformation of a state is
expressed by a relation between the state before the aperatd the state after
the operation. The second state is distinguished from tbiedive by decorating it
with a prime. The predicate relating the two states is givelow the horizontal
line. In this case all positionslemposare removed, wherelemis an element
from the sequenctackatlaselemsthat has the identified?.

2.3 Using Duration Calculus

To maintain safety, the train has to supervise the trackatepidy and must set the
speed limit in time. This requires real-time constrainteofkier aspect where real-



CSP-0Z-DC 7

time is important is the securing of crossings. If the traowes them too early,
the traffic is unnecessarily blocked. If the train securesrtitoo late, there is not
enough time to close the gate before the train reaches tksiog

For specifying real-time constrains, we use Duration Qagk(DC). Itis a interval-
based real-time logic and calculus developed by Zébal.[1991]. It can be ap-
plied for specifying both high-level requirements and ierpentation-level details
of real-time systems.

In DC state assertions Bescribe time dependent properties of observaiihss
Time— D. Duration termsdescribe interval-based real values. The name of the
calculus stems from terms of the forfiP measuring theluration of a state asser-
tion P, i.e. the accumulated time thBtholds in the considered interval. The sim-
plest duration term is the symbéhbbreviating/ 1 and thus denoting tHengthof
the given interval Duration formulae FEG describe interval-based properties. For
example,[P| abbreviates P = ¢ A ¢ > 0 and thus specifies thBtholds (almost)
everywhere on a non-point interval. A point interval is sfied by [], which ab-
breviates the formula= 0. Sequential behaviour is modelled by t®poperator
“;”. the formulaF ; G specifies that firsfE and thenG holds. The formulaCF
abbreviatesrue; F; true and thus expresses that on some subintéryablds. The
dual OF abbreviates-G—F and thus states th&t holds on all subintervals. For
more details see [Hansen and Zhou 1997].

A subset of the DC is calleanplementableslue to Ravn [1995], which make
use of the following idioms wherec Time

F— [P] == O=(F;[-P]) [followed-by]
F— [Pl == (FAL=1t)— [P] leads-to]
FEL(P] == (FAL<t)— [P [up-to]
F—0[P] == —(F;[=P]) [followed-by-initially]
F50[P] == (FAL<t)—o[P] [up-to-initially]
F-0[P] == (FAL=1) —[P] [leads-to-initially]

Intuitively, F — [P] expresses that whenever a pattern given by the forifula
is observed, it will be “followed by” an interval whei holds. In the “leads-to”
form the pattern is required to have a lengtnd in the “up-to” form it is bounded
by a length “up to"t. Note that the “leads-to” does not simply say that whenever
F holds thert time units later] P| holds, but it rather requiresstability of F for
t time units before we can be certain th&] holds. Theinitially variants require
the above behaviour only starting at time O.

As an example consider the following DC formula which sttest the next
setMaxSpeedommunication must occur after at most one second:

[ct(setMaxSpeed= n] — [ct(setMaxSpeed> n|

In DC all observations must have a duration in order to beblasi CSP events,
however, happen at a single point in time, so we cannot obstiem directly.
Therefore we count the number of times they occur and reasout ¢his count.
The above formula states that if the numbersefMaxSpee@vents stays stable
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__TrainController.

chan getPos [p? : Positior. .. [interface channels]
local _chan clearDangerPosition [id? : Identifier. ..

[local channels]

main = ... [CSP part]

[OZ part consisting of ..]

trackatlas: TrackAtlas [state space]
dangerPoints P Position

__Init

[initial schema]

__com_clearDangerPosition

[communication schemas]

RN [DC part]

Fig. 3: Class in CSP-OZ-DC

for one second, then the event has to occur afterwards sctisatMaxSpeed
increases.

2.4 Specifying Classes and Systems

The basic building block in our combined formalism CSP-OZ-8 a class. Its
syntax is as in CSP-OZ [see Fischer 1997, 2000], only the DCipaew, see
Fig. 3. First, the communication channels of the class are detl&eery channel
has a type which restricts the values that it can communiddtere are also local
channels that are only visible inside the class and througithwthe CSP, OZ,
and DC parts interact. Second, the CSP part follows; it iemgilby a system of
(recursive) process equations. Third, the OZ part is givaithvitself consists of
the state space, the Init schema and communication schereeifygg in which
way the state should be changed when the event occurs. imglibw a horizontal
line the DC part is stated.

Classes can be combined into larger specifications by thes@&&turing opera-
tors, i.e. parallel composition, renaming and hiding [Res£997]. This allows us
to describe architectures like the one in Fg.
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3. Semantics

Each class of a CSP-OZ-DC specification denotes a time depepdocess. Here
we describe how to define this process in a transformatioagl w

3.1 Semantics of the constituents

We begin by recalling the semantic domains of the constitapacification tech-
niques. The standard semantics of untimed CSP igfitliesemantics based on
failures and divergence [Roscoe 1997].fdllure is a pair (s, X) consisting of a
finite sequence drace se€ seqgCommover a seCommof communications and a
so-calledrefusal set Xc PComm Intuitively, a failure(s,X) describes that after
engaging in the tracethe process can refuse to engage in any of the communica-
tions in X. Refusal sets allow us to make fine distinctions betweewrmdifft non-
deterministic process behaviour; they are essential faaiming a compositional
definition of parallel composition in the CSP setting of dymmmous communica-
tion when we want to observe deadlocks. Formally, we defiaeséts

Traces== segComm and Refusals==PComm
Failures== Tracesx Refusals

A divergences a trace after which the process can engage in an infiniteeseg
of internal actions. Th& D-semanticof CSP is then given by two mappings

F : CSP— PFailures and D : CSP— PTraces

For a CSP proceddwe write F D[[P]| = (F [[P]] , D[P]). Certain well-formedness
conditions relate the values ¢f and © [see Roscoe 1997, p.192]. TheD-
semantics induces a notion pfocess refinememtenoted by_ ;. For CSP pro-
cesse® andQ this relation is defined as follows:

PCyp Q iff F[P] 2 #[Q] and D[P] > D[Q]

Intuitively, P =, Q means tha@ refinesP, i.e. Q is more deterministic and more
defined tharP.

Instead of the negative information of refusal sets one tsmw@se positive in-
formation about the future process behaviour in terms afal®dacceptance sets
For a traces an acceptance sAte PCommdescribes a set of communications that
are possible aftes. The set of all initial communications aftseiis the largest ac-
ceptance set aftex Fig. 4 exhibits the refusal and acceptance sets after the empty
trace of the process— Stop Mb— Stop .

Acceptance sets are due to De Nicola and Hennessy [1983] amalddsy [1988]
who developed an approach to testing of processes thatagésula process model
equivalent to the failures divergence model but with aceqe sets instead of
refusal sets. Acceptance sets satisfy certain closureepiiep [see Hennessy 1988,
p.77]. For example, they are closed under union.

Acceptance sets are discussed also in [Roscoe 1997, p.2d@8haans of normal
form representation of CSP processes. However, in cortsasennessy and De
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\
Refusal sets: A
) b »197, .
all{s}et{s \i/it{hgu'a, a{ { p  Acceptance sets:
all sets withoub {a},{b},{a b}

Fig. 4: Refusal and acceptance sets

Nicola’'s approach, there for each tragenly the minimal acceptance sets after
s together with the set of all initial communications afggiwhich is the largest
acceptance sets aftgrare considered.

Formally, let

Acceptances-=PComm
and A4 be the process semantics
A : CSP— P(Tracesx Acceptances

based on acceptance sets instead of refusal gefissemantics is the process se-
mantics based oA andD. We write 2D[[P] = (4[[P] , D[P])) for a CSP process
P. Then the following proposition on process refinement holds

PROPOSITIONL. P L., Qiff A[[P] 2 A[Q] and D[P] 2 D[Q]

Thus we do not lose any process information by taking acoeptaets instead of
refusal sets. Since our approach to verification will be Base acceptance sets,
we shall represent here the semantics of untimed CSR and D.

Object-Z (0Z) describes state spaces as collections ofitypeiables, say
of type Dy, and their possible transformation with the help of actioedgrates
A(x,X), for exampleX > x+ 1, where the decorated versigirepresents the value
of x after the transformation. The language comes with the usotén of data
refinemenfWoodcock and Davies 1996].

Duration Calculus (DC) specifies properties of observablesinterpreted as
finitely varyingfunctions of the fornobs; : Time— D for a continuous time domain
Timeand a data domaib (see Fig5). The concept ofinite variability means that
the functionobs; has at most finitely many discontinuity points in any finiteei
interval. As a consequence the integral (duration) opet®C is well-defined
and an induction rule for DC is valid [Hansen and Zhou 1997].

When modelling real-time systems in Duration Calculefinementis repre-
sented by logical implicatiors, i.e. for duration formula€&, G we sayf refines Giff F =
G. As examples we state two refinement laws for DC implemensatile to Ravn
[1995].

PROPOSITION2. Let P,Q be state assertions and’te Time with t< t'.
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Fig. 5: Finitely varying function

(a) Decreasing the upper time bound of a reaction is a refimgniee. we have

P15 Q] = [P] -5 [Q.

(b) Increasing the lower time bound of a stability is a refies) i.e. we have
[Pl =5 [Q] = [P] =% [Q].

3.2 Untimed semantics of CSP-OZ classes

The untimed semantics of the combination CSP-OZ is defindelscher [1997,
2000]. The idea is that each CSP-OZ class denotes a prodbgssemantic model
of CSP. This is achieved by transforming the OZ part of suckasscnto a CSP
process that runs in parallel and communicates with the G8Pagp the class.
Consider a CSP-OZ class

U

I [interface]
L [local channels]
P [CSP part]
z [OZ part]

also written horizontally abl = spec | L P Z end with an OZ part

4
st: State [state space]
Init(st) [initial condition]

...com_c(stin? outl,st)...
[one communication schema for each cin | or L]

where the notationom c(st,in? out, st ) indicates that this communication schema
for c relates the statst to the successor stas# and has input parameters? and
output parametersut!.

The OZ part of the class is transformed into a CSP pro@edslaindefined by
the following system of (parametrised) recursive equatifor OZpart using the
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(indexed) CSP operators for internal nondeterministiciagh@1) and alternative
composition Q):

OZMain = T1 OZPart(st)
OZPart(sty = O Moue ¢ CIN?0utt — OZPart(st)

c, in? outl, s
wherestranges over all states Btatesatisfyinglnit(st). Thus the proces9ZMain
can nondeterministically choose any statsatisfyingInit(st) to start with. Fur-
ther on,c ranges over all channels declared iar L, andin? ranges over the set
Inputgc) such that the condition

Jout : Outputgc); st : Staté e com _c(st,in?,out,st')

holds. Finally, for any chosemandin?, the valueut ranges over the s@utputgc),
andst ranges oveBtaté such that

com_c(st in?,out,st)

holds. So theZPart(st) is ready for every communication evenin?.outl along
a channelkc in | or L where for the input valuem? the communication schema
com_c(st in?,out,st') is satisfiable for some output valuestl and successor state
st. For given input value? any suchout! and st can be nondeterministically
chosen to yield.in?.outl and the next recursive caDZPart(st). Thus input and
output along channelsare modelled by a subtle interplay of the CSP alternative
and nondeterministic choice.

OZMainruns in parallel with the explicit CSP proce3®f the class:

proay = P [| Event$l UL) || OZMain

Here the parallel composition synchronises on all eventsandL. In [Fischer
1997, 2000] the semantics of the classs then defined by

FD[U]] = F Dprocy \ EventsL)]

where all events along local channglsre hidden. Hiding in untimed CSP makes
communications occur autonomously without delay. Thugbidan cause non-
determinism and divergence.

By the above process semantics of CSP-OZ, the refinememtniotj ,, is im-
mediately available for CSP-OZ. One of our guidelines fonbming specification
techniques isefinement compositionality.e. refinement of the parts should imply
refinement of the whole. The following theorem is shown irsisier 2000]:

THEOREM1. (a) Process refinement;fC ;- ;, P, implies refinement in CSP-OZ:
speclLP1Zend LCg4,; speclLP2Zend

(b) Data refinement Z—, Z, for a refinement relatiop implies refinement in CSP-
OZ: speclLPZ;end Csp sSPec I LPZ;end
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3.3 Timed semantics of CSP-OZ-DC classes

The semantic idea of the combination CSP-OZ-DC is that etads denotes a
timed process. To this end, we lift the semantics of CSP and@d the level of
time dependent observables. In the timed setting the betnaef internal actions
has to be studied carefully. We distinguish between intetrections inherited
from the untimed CSP setting and intermadit actions induced by hiding commu-
nications with a certain timing behaviour. Whereas intemactions do not take
time and can thus be eliminated in accordance withfrB-semantics, possibly
inducing nondeterminism or divergence, intemalit actions let time pass before
the next visible communication can occur. Whereas an iefiséiquence of ac-
tions is equivalent to divergence, an infinite sequence dfactions is equivalent
to deadlock.

For the simplicity of the subsequent exposition, we assumatethe untimed part
is divergence free, formallyD[proqy || = @. Then the semantics of CSP-OZ-DC
will associate with each specification of the combined laggua timed process
consisting of a set of time dependent traces and time depeadeeptances:

Atime: CSP-OZ-DC— P((Time— Traces x (Time— Acceptances

For a CSP-OZ-DC specificatioB its semantics4mime[S] will be described by a
DC formula in the observablds andAccinterpreted as finitely varying functions

tr; : Time— Traces and Acc; : Time— Acceptances

This DC formula denotes the set of all interpretationsraind Accthat make the
formula true; thus it will be identified wittrime][S).

We explain the details first for a CSP-OZ-DC cl&swhich augments the un-
timed CSP-OZ clasd by a timing parfT expressed in DC:

_C
U [untimed components]
T [DC part]

We shall also expan@ horizontally into
C=speclLPZTend.

The semantics o€ is obtained by taking the CSP procgseq, defined for the
CSP-0OZ clas$) but interpreting it in the setting of the time dependent oleaes

tr andAcc and then conjoining it with the time dependent restridiexpressed

in the DC partT. Sinceprog is still an untimed process, its semantics in terms
of tr and Accwill allow any time dependent behaviour. More preciselyegi the
untimed acceptance semanticgpadcy, which we assumed to be divergence free,
ie.

A[procy] : P(Tracesx Acceptances with D[proc,] = @,
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we define its timed semantics as the DC formula

Armelprocu]] & Fu N Fa AN Fo N F3

in the observables andAccwith subformulaefy, F1 — %3 given as follows:

Fu :O[(tr,Acc) € A progy ||

requires that the values of the observaliteand Acc are taken from the untimed
acceptance semanticsmbg .

Fi [V tr=()], true
requires that initially the trace is empty.
Fo:0Vh,h e (h#KW AJtr=h]; [tr =h]) = 3c,veh =h"(c.v)

requires that the trace can only grow and that one commiumicavent occurs at a
time. The modalityD quantifies over all subintervals of a given time intervall an

; iIs the chop operator of interval temporal logic used in D8ug the subformula

[tr = h]; [tr = K] holds in a given time interval if on a first non-point interval
the tracetr assumes the valueand on a second non-point interval it assumes the
valuel. By %, ' can differ fromh only by one communication event. Together
with the restriction to finite variability (cf. subsectidhl), we thus require that
only finitely many communication events occur within anytgrtime interval and
that one communication event occurs at a time. Consequientdyr semantics a
non-zero time passes between successive events. Finally,

Fz:0OVhecv e ([tr=h]; [tr=h"(cv)] =
([tr =h] A (true; [c.ve Acql)); [tr =h"(cV)])
requires that every communicatiarv can occur only with prior appearance in an

acceptance set.

Only the DC parfl can actually restrict this behaviour in a time dependent-man
ner. To this end] has limited access to the observaliteandAccvia the expres-
sionsct(X) anden(X) whereX is a set of communication events. By definition,

‘ ct: PComm— N
| VX :PComme ct(X) = #(tr > X)

In Z a finite sequencér = (a,...,a,) is represented as a mapping of the form
{1+~ a,...,n— a,}. Thentr > X restricts the range of this mapping to those
elements withg; € X. The operator # counts the remaining elements in this set.
Thusct(X) counts the number of occurrences of events foim the tracer. Next

‘ en: PComm— B
‘ VX :PComme en(X) < X C Acc
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Thusen(X) records whether all events froican be accepted next. It is for this
definition of enabledness that acceptance sets are easise than refusals. This
motivated our choice of the semantic representation. Fargdescommunication
eventc.v we write ct(c.v) anden(c.v) instead ofct({c.v}) anden{c.v}). Using
these expressions we can specify timing constraints fowigible communica-
tions.

Altogether the semantics of the timed cl&ss given by the formula

/qTime[[C]] < hidelLe (_‘TU ANFaNTFoN TN T)

where all communications along the local channeld iare hidden. For a DC
formulaF in the observables andAccwe define

hideLeF <« dtrg,Acg e
(([]V [tr = squaslitroe=L) A Acc=Acp\L|) A
Fltro/tr,Acg/Acqd)

For afinite sequendey = (ay, ...,an) = {1~ ay,...,n— a,} therange subtraction
troe>L of Z removes all pairs— g with g € L. This may result in a mapping which
is not a sequence any more (due to missing indices), forriostay &> {a;} =
{2 ay,...,n— an}. The operatosquashtransforms this mapping into a proper
sequence, hemsguasliitroe{ai}) = {1+ ap,...,n— 1+ an}.

Thustr is a trace resulting frontrg by removing all communications ib, and
hide L o F is a DC formula in the observablésand Accwith values linked via
the substitutiorF[tro/tr, Acg/Acd to the original values of these observables in
F. It describes the timed semantics of the CSP hiding operator

3.4 Timed Semantics of System Specifications

System specificationS are obtained by combining class specifications with the
CSP operators for parallel composition, renaming and bidirus a typical spec-
ification could be of the form

S= (Cu[Ri] [| Co[Re]) \ L.

Renaming denoted by the postfix operatf®], whereR is a binary relation be-
tween events, is used to change the names of communicatoise he semantic
definition is straightforwardHiding, denoted by the postfix operatdl, is used to
make all communication events in deinternal. Semantically, hiding is defined
using the operatdiide L o F introduced above.

The parallel composition Ry} || C2[Rz] is a special case of thephabetised
parallel C1[Ry] alls C2[Rz] whereA andB are the sets of interface events of the
componentsC; [Ry] andC,[Ry]. For DC formulaeF; andF; in the observablet
and Accthe semantics of the alphabetised parallel can be expresisaitarly to
[Schenke and Olderog 1999], by the following DC formula:

FiallsF2 < 3try,tro, Acg,Acc e
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(([TV [tr e sedAUB) Atr [A=try Atr[B=1try A
Acc= (ANBNAcg NAce)U
((A\B)NAcqg)U
((B\A)NACe)]) A
Fi[tri/tr,Aca/Acg A Faltra/tr, Acg /Acd)

Intuitively, F1 a||s F2 describes a combination where the left-hand process is al-
lowed to engage in those events Afthat satisfyF4, the right-hand process is
allowed to engage in those eventsBthat satisfyi-,, and both must synchronise
on every event in the intersectiéxm B.

For traces this is formalised using tfiker or projectionfunction | of Z. If tr
is a finite sequencdr | A is the largest subsequencetofcontaining only those
elements that belong to the sét Note thattr | A = squasiitr > A) holds. For
instance, iftr = (a,a,b,c,d,d,e) thentr | {a,d} = (a,a,d,d). ThusF; allg F2
describes all traces over the joint alphabeA U B such that the projections [ A
andtr | B are consistent with the formuldg andF,. For the common acceptance
setAccthree cases are distinguished: inside the synchronisagbAN B of all
events are taken that can be acceptetdith F andF,, inside the set difference
A\ B all events are taken that can be accepte@fpyand inside the set difference
B\ Aall events are taken that can be accepte&hy

The refinementrelation between classes or between specifications of tine sa
interface is modelled by (reverse) logical implication e tsemantic domain: a
classC; refinesa classCy, abbreviated by

CLC Cy, iff Arime[C2]l = Atimel[Cy]
holds. We show thakfinement compositionalityolds also for CSP-OZ-DC.

THEOREM 2. (a) Process refinement;R= ., P> implies refinement in CSP-OZ-
DC: speclLP1ZTend L speclLP2ZTend

(b) Data refinementlz;p Z, for a refinement relatiop implies refinement in CSP-
OZ-DC: speclLPZ;Tend C speclLPZ,Tend

(c) Time constraint refinement & T, implies refinement in CSP-OZ-DC:specILPZ Tiend C
spec| LP Z T end

PrRoOOF Properties (a) and (b) are immediate consequences of dindogind the
monotonicity of 7y w.r.t. refinements of the untimed clads For instance, for (a)
let Ui = spec | L Pj Z end andC; = spec | L P; Z T end wherei = 1,2. Then

I31 Ef@ I:)2
implies Uy Cgp U (by Theorem 1)
implies  A[proay,]] C A[procy,]] (by Proposition 1)
implies %y, = Fu, (by the monotonicity offy)

implies  Arime[Co]] = AmimeC1]]  (by the form of Arime[C]))
implies C;CCy (by the definition ofZ)



CSP-0Z-DC 17

s ﬁ H crossing point

danger iouositién danger | ﬁ)osition

speed profile static speed profile " end of track

< T <
AN i N
N\ | \

\3 dynamiZ: speed profile )
dynamic profile if danger position is enabled

Fig. 6: Braking curve

Property (c) follows from the conjunctive form of the formaulirime[C]. O

By this theorem, it is possible to reuse verification techaijfor the components
of a CSP-0OZ-DC specification to prove refinement resultstfenthole specifica-
tion. However, when the desired property of the whole sptifin depends on the
semantic interplay of the components, more sophisticageification techniques
are needed. In Sectidhwe develop one such a technique.

4. Case Study

In Section2 we have already introduced the case study of a radio coedirodlil-
way crossing. In this section we want to take a closer looketttain controller,
especially how it calculates the maximum speed. A centratept is thebrak-
ing curve see Fig6, which is a function that gives for each position on the track
the maximum admissible speed. The braking curve considtsmparts: a static
profile, a step function giving the admissible speed for a@smtk segment, and a
dynamic profile which takes care of unsafe crossings andeabtaking character-
istics of the train.

Before we go into the details of the braking curve, we firsialecthe basic data
types in our case studyidentifier and Direction are abstract type$ositionand
Speedare represented by real numbers.

[Identifier, Direction|

Position==R

Speed==R

StaticProfile== sedPositionx Speedl

As said above th&taticProfileis a step function. It is represented here as a finite
sequence of speed changes, each consisting of a positi@candgsponding max-
imum speed. After such a change the speed remains constdrnherposition of
the next change is reached.
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For each crossing that has not affirmed its safety, a dangatiqgoin front of
the crossing is set and in the dynamic profile the correspgngdbsition gets a
maximum speed of zero. To take care of the braking charatiterihere is a fixed
function brakingDist that gives for each speed the maximum distance the train
needs to get to a safe halt. In Z this is a monotone functiom gpeed to position
(distance).

‘ brakingDist: Speed— Position
‘ Vs,s : Speed s< s e brakingDis{(s) < brakingDis{s')

With this function it is possible to calculate the dynamioffle. The calculation
is straightforward, so we do not go into details here. It iscHjed as a function
calcProfiletaking a static profile and a set of danger positions as argtaraend
returning the dynamic speed profile as a function from pmsito maximum ad-
missible speed.

| calcProfile: StaticProfilex P Position— (Position— Speed

In Section2 we have already introducetrackElementand TrackAtlas Here
we give the full definition. A track element has a unique idfetid and can be
either a crossing or a point. The associated danger pos#tistored inpos The
componensetpogyives the position where the train should send the set comman
The last fielddir is only meaningful for points and specifies the direction tmck
it should be switched.

__TrackElement
id : Identifier
type: {crossingpoint}
pos: Position
setpos Position
dir : Direction

The track atlas contains the static profile as well as a seguafitrack elements.

TrackAtlas
staticprof : StaticProfile
elems seqTrackElement

Using these types we now specify tiieinController as a CSP-OZ-DC class.
We concentrate on the parts relevant for the braking cueeF&.7. The external
interface of this class was already depicted in RigNotice, however, that here
the values communicated over these channels are speciifeglZischema types.
The local channelsetDangerPositionclearDangerPositiorandcalcMaxSpeedre
internal communication channels used to link the CSP and &Z pThe CSP
processes already occurred in Secpbut here we also show the communicated
data.
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The state space of the train controller consists ofrekatlas a set odangerPositions
and the dynamic speed profilynProf. The latter is calculated from the first
two. In Object-Z this is represented by putting the depehsariable below a\-
sign. This sign indicates thdynProf may change implicitly whedangerPositions
changes. The formula definirynProf in terms of the other variables is written
below the horizontal line. This formula is also calledlass invariant

The operatiortalcMaxSpeedbasically looks up the maximum speed for the cur-
rent position in the dynamic speed profile. But to make thia antroller safe it
must look a short time into the future. This is donerbgctDistwhich calculates
the maximum position the train may reach within its reactiome. The reaction
time can be calculated from the first DC formula: #sMaxSpeedvent occurs ev-
ery second. Since the CSP part requirgePosevent between tweetMaxSpeed
event, the maximum time betwegetPosand setMaxSpeeds also a second. So
at most two seconds after the lggttPosevent thesetMaxSpeet called a second
time with updated values.

This is the reaction time of the train controller. To this ¢éiwve can add the
reaction time of theSpeedControlleto get the total reaction time. So assuming
that the maximum speed of the train is given in a variabéxSpeethe maximum
distance the train may pass in two seconds reaction timeeamndy-approximated
and calculated by the following formula.

‘ reactDist: Speed— Position

‘ Vs: Speeck reactDis{(s) = maxSpeedreactTime

The second DC formula gives an example of #mablepredicate. It is used
to check whether theetTrackElementommunication is possible. This event is
possible whenever the position in teetposcomponent of this track element was
reached and the element was not notified yet. Whense@irackElemenis en-
abled it should occur after at most one second.

The last DC formula specifies that the danger position focarsel track element
should be set again five minutes after #eTrackElemengvent was issued. Nor-
mally the train should have passed the corresponding trieckemt by that time,
otherwise the train must consider it as unsafe again.

The overall specification of the control system is given ey plarallel composi-
tion of the classes corresponding to Rigof which we have exhibited (part of) the
classTrainController.

Spec= TrainController || RadioController|| Odometel| SpeedController

5. Verification

We exploit the transformational semantics given in Sec8dor a partially auto-
matic verification of properties of CSP-OZ-DC specificati@atisfying the follow-
ing restrictions: the CSP part represents a finite-stategss the OZ data types
are finite, and the DC part obeys certain patterns describlxvb Our approach
builds on existing tools and techniques:
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___TrainController.

chan getPos [p? : Positior]; getSpeed|s? : Speedl
chan setMaxSpeed]s! : Speed
chan setTrackElement[id! : Identifier; dir! : Direction]|
chan securedTrackElementfid? :Identifier
local _chan setDangerPositioyclearDangerPosition [id? : Identifier]
local _chan calcMaxSpeed|p? : Position s? : Speedmaxs$: Speed
main < SuperviseSpedtiSecuredHandler

SuperviseSpeedé getSpeesspeed- getPogpos

— calcMaxSpeelghod spee@maxs

— setMaxSpeddhaxs— SuperviseSpeed
SecuredHandler =  securedTrackEleme?it

— clearDangerPositioid — SecuredHandler

trackatlas: TrackAtlas
dangerPositionsP Position
A

dynProf: Position— Speed

dynProf = calcProfiletrackatlasstaticprof,dangerPositions

—_Init
dangerPositions= {elem: rantrackatlaselemss elempos}

__com_setDangerPosition
A(dangerPositions
id? : Identifier

dangerPosition's= dangerPositions)
{elem: rantrackatlaselemg elemid = id? e elempos}

com_clearDangerPosition [see Section 2]
com_setTrackElement [definition omitted here]

—_com_calcMaxSpeed
p? : Position
s? :Speed
max$ : Speed

let endp= p?+reactDis(s?) e
maxs$ = mindynProf| [p?,endp |)

[ct(setMaxSpeed= n] N [ct(setMaxSpeed> n|
[en(setTrackElement: ct(setTrackElement= n|
N [ct(setTrackElement> n]
([ct(setTrackElemerit) = n|; (¢ = 300s A [ct(setTrackElemeritl) > n
A ct(setDangerPointd) = m])) — [ct(setDangerPoinid) > m|

Fig. 7: ClassTrainController
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Fig. 8 Procedure for model-checking

o for dealing with CSP we use the FDR model-checker [see Ro$664,
Formal Systems (Europe) Ltd 1995],

o for dealing with Object-Z we use the transformation into Gi&R described
by Fischer and Wehrheim [1999],

o for dealing with timing properties we use the model-che¢kéPAAL [Bengts-
sonet al.1997] for timed automata.

Additionally, we use a new tool, callé@u, described below. The idea is as follows.
Given a clas€C = spec | L P Z T end we proceed in four steps as illustrated in
Fig. 8:
(1) Transform the untimed proceks= spec | L P Z end into FDR-CSP, the
input language of the FDR model-checker for CSP.

(2) Apply the FDR model-checker to output a transition sysies; for U with
acceptance sets.

(3) Use our new toolf2y, to transform this transition systelry; into a timed
automaton4c representing all the timing restrictions of the DC pamf C.

(4) Verify properties of the class by applying the model-checker UPPAAL to
Ac.

A direct automatic treatment of the DC part is not feasiblease for DC only
interactive verification support is available [see Skalk&hl994 and Heilmann
1999]. Also the model-checker of Tapken [2001] is not opegabn DC but on
phase automata. Hence the transformation step (3) is needed

Although step (1) represents just the CSP proc@&Main of Section3, it re-
quires user interaction to represent the sttand the communications schemas
com c(stin?,out!,st') in FDR-CSP [see Fischer and Wehrheim 1999]. Steps (2)
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and (3) proceed fully automatically. Step(4) requires maggser interaction in the
construction of certain test automata.
5.1 Transforming DC patterns

New is step (3). The DC patterns for timing restrictions tbamh be handled in
this step are new variants of the DC implementables [Ravblia@oduced next.
An event seX appearing as a subscript of the chop operator or the folldwyed
operator (cf. SectioR) indicates that an event frohappens at the corresponding
chop point. Formally:

F;XG:: (F A fet(X) =n]); (GA [ct(X) >n])
F—G==(F A [ct(X) =nl) = (G A [ct(X) > i)
F—0G==(F A [ot(X) =n[) <0 (G A [et(X) > ni)

The following formula states that while a stability consitaapplies, events from
the setX must nothappen:

F=%G==(FAfct(X) =n]) =5 (GA [et(X) =n])

/X
F—=0G==(F A [ct(X) =n]) =50 (G A [ct(X) =n])
/X

The toolf 2u supports the following DC patterns:

([P1; IQI) ~ R [chop-leads-to]
X

(IP]; [Q]) = [R] [chop-up-to]
X /Y

Q] —)t(> R leads-to]

Q] % R [up-to]

Q] —:(>o R [leads-to-initially]

QI %o R] [up-to-initially]

Y

Heret € TimeandP, Q, R are state assertions. The event 3&t¢ are optional and
can be omitted.

The toolf2u implements an algorithm that applies given DC formulae ef th
above patterns one after the other to transform the trans#ystem produced in
step (2) into a timed automaton. As an example we show in &itpe pseudo
code for the leads-to pattern. The state assertipasdR are represented by the
set of states satisfying these assertions. In stége algorithm adds a new clock
to measure the time the transition system stayed @+sdate without executing
an event fromxX. While being in aQ-state this clock must not grow beyond
because otherwise the DC formula would be violated. Thesefiee add in steg
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a corresponding state invariant to @Hstates. The clock needs to be reset when a
Q-state is entered from outside (st&p ) or when an event fronX occurs and the
control stays imQ (step3.b ). All outgoing events that do not lead into Bastate
or do not communicate an event frasimust happen before timehas elapsed.
Therefore a corresponding guard is added in 8tep

Besides enriching the transition system generated by FDRoml also adds
a timedsupervisorautomaton running in parallel. The supervisor serves twe pu
poses: first, it ensures that — in agreement with the DC sécsatdfined in Section
3.3— a non zero time passes between successive events, and,siétades the
local channels that should not be visible to other processes

5.2 An example

We illustrate the above verification procedure with the epienof a simple cof-
fee vending machine. The CSP-OZ-DC class describing thshima is given in
Fig. 10. Money is represented by the natural numbgrsAs global constants we
assume a finite amount bfoneythat can be handled by ti@offeeMachinga finite
setCoin of different kinds of coins that can be inserted into @efeeMachingand

a certainprice for a cup of coffee. These assumption can be made more piacise
a concrete application.

The automaton has five channels to communicate with its mestoThe chan-
nelin is used by the customer to insert a coin. It takes the valu@etbin as
parameter. Similarly anut event is generated by the machine when a coin is re-
turned. The other channels have no parameters and repthsestents that the
user presses the stdmitton gets acup and gets theoffee The CSP part ensures
that the events occur in correct order. First it accepts Soomning coins until the
button is pressed. The external choice ensures that thegsDunk is only called
when user presses the button. When this happens the pi@dekswill signal the
cupevent, thecoffeeevent, and continue with the procd®sturn This process will
return coins until it is finished and then go back to tien process.

Pattern: Q] % [R]

1. Introduce new clock c
2. To all states s € Q add invariant c <t
3. For each transition tr s =% ¢ do
aif s¢& Q s € Q
add reset ¢ = 0 to ftr
b.if s € Q s € Q, eve X
add reset ¢ = 0 to ftr
c.if se Q (s € RV evé¢g X
add guard ¢ < t to tr

Fig. 9: Algorithm for the leads-to pattern
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Money: FN
Coin: FN
price: N

__CoffeeMachine

chan in: [coin? : Coin|
chan out: [coin! : Coin|
chan button cup coffee
local _chan finished
main = in?— main O Drink
Drink = button— cup— coffee— Return
Return = out?y — Return finished— main
—Init
m: Money m=20
_com.in
_com_button A(m)
A(m) coin? :Coin
m > price m = m+ coin?
m = m— price
_com_out
_comfinished____ | A(m)
A() coinl : Coin
m=20 m = m— coin!
([true] ; [en(coffeg]) =2 [en(coffeg |
cup
[— (en(button) Vv en(in))] N [true]
finished

Fig. 10 Coffee vending machine

The CSP process does not care how much money was enteredimettas
this is better done in the OZ part. The only changeable datsisrmachine is the
amountm of money that was inserted by the customer. It is initializedero by
thelnit schema. When a coin is inserted the vatuecreases by the value of that
coin as specified by th@m_in schema. Note that this schema is not enabled when
the new valuan’ would exceed the maximum of the $dbney The machine will

then refuse to take any more money.
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The communication schema for thattonevent checks that enough money has
been inserted and reducesaccording to the price of the coffee. As long as not
enough money has been inserted it will block thétonevent. The valuenm is
also reduced when a coin is returned to the customer. Sioick is an output
parameter, its value is nondeterministically chosen byZtlsehema as long as it
does not exceeth. Again the schema refuses tbat event wherm is zero as it
cannot be further reduced. The last scheoma finishedchecks whethemis zero.

Last but not least the class contains two timing constraifitee first constraint
ensures that after treip event it takes at least two seconds beforecibifeeevent
happens. This is expressed by th®p-up-topattern introduced earlier. After the
cup event the coffee event is enabled and formula requiedsttstays enabled for
at least two seconds. The expanded form of this constraint is

([et(cup) = n|; [ct(cup) > n A en(coffeg]) =2 [en(coffeg] .

The second timing constraint ensures that the time intémwahich the automaton
is not responding is limited by 15 seconds. The automatoesigansive when it is
ready to accept either a coin or a button can be pressed. Tbe@tents are not
generated by the customer, but instead are driving actuafahe machine. The
formula is a normal implementable for progress.

5.3 Applying the transformation steps

We now apply the four transformation steps to the CSP-OZ-pé&tification in
Fig. 10. The result of the manual step (1) is shown in Hig. It shows the FDR-
CSP specification using the input language for the FDR moletker and repre-
senting the CSP-OZ part of the vending machine in E@. The constant decla-
rations have now been instantiated. To keep the exampld sreakstricted the
maximum value oMoneyto 40, the seCoin to {10,20}, and fixed theprice at
20. The channel declaration and the CSP part are taken withodification. The
OZ part is given as process that takes the complete staenhers a parameter.
The CSP and the OZ part are then put in parallel synchronizieg their common
alphabet.

The next two steps are performed automatically by our taolstép (2) it uses
the FDR model-checker to create a compact finite transitystem from the spec-
ification of Fig.11. The result is displayed in Fig2. On the left-hand side are the
states where the CSP part is still in its main process andub®mer can insert
money or press the button. The different nodes represemtiffieeent amounts of
inserted money as indicated by the valuesndh the graph. Note that the events
which are blocked by the OZ part do not occur in the diagrant. eéxample, the
bottom most node, which represents the state whehas reached its maximum
of 40, does not allow anin events. After the button is pressed the cup and coffee
events are signalled and depending on the amount of inserterty the corre-
sponding change is returned.

In the FDR model there is one state with an internal choicethéndiagram
this is represented by labelling the node with two minimalegetance sets. This
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-- Constants
Money = {0..40}
Coin = {10,20}
price = 20

-- Channels

channel in : Coin

channel out : Coin

channel button, coffee, cup, finished

-- Class CoffeeMachine
CoffeeMachine =
let
-- CSP part
main = in?x -> main [ Drink
Drink = button -> cup -> coffee -> Return
Return = out?y -> Return [] finished -> main

- OZ part
OZPart(m) =
([ coin : {x| x<- Coin, member(m + X, Money)} @
in.coin -> OZPart(m + coin))
[] (let ReturnCoins = {x| x<- Coin, member(m - X, Money)}
within ReturnCoins = {} & -- Pre(out)
[l coin : ReturnCoins @
out.coin -> OZPart(m - coin))

[[ m >= price & -- Pre(button)
button -> OZPart(m - price)
Im=0& -- Pre(finished)

finished -> OZzPart(m)

within -~ Put CSP and OZ part in parallel
main [| {| in, out, button, finished |} [] OZPart(0)

Fig. 11: FDR code for the Coffee Vending Machine

node represents the state where the customer inserts 40et@@back. The
machine can choose whether it returns a 20 coin or a 10 coihdasecond 10
coin later). Semantically, each acceptance set repreaatidse of its own in which
the automaton will only accept events from this set. By tluswate properties of
acceptance sets, there is — besides the minimal sets — alfdltbet containing all
outgoing events as well as some intermediate sets thattlieeba the full set and
a minimal set. For simplicity these sets are omitted fromdiagram.

Since a timed automaton does not have the notion of acceptais, our tool



CSP-0Z-DC 27

finished

ff
button cup O}O ee
m= 30 > > out.10
m=10 m=10
{out.10},{out.2 m= 20

coffee

button cup

m=40 m=20 m=20

Fig. 12 Automaton generated by FDR

O
ut.20 -
out.
{out.10;,{out.20
coffee

Fig. 13 Splitting nodes with more than one acceptance set

transforms it to make those sets more explicit. Every staténly more than one
acceptance set is split, so that each set belongs to exawtlgtate. The ingoing
and outgoing transitions are copied as well. The next stép ismove outgoing
transitions labelled with events that are not in the acceaet. Afterwards the
acceptance set of each state describes exactly the outgairsitions of this state.
This transformation process is illustrated in Fig.

In step (3) the DC formulae are applied one after the othare&oh DC formula
a new clock is introduced and new guards and resets are addlee transitions.
The resulting UPPAAL automaton is given in Fitd. In our example two clocks
c1, c2 were introduced, one for each DC formula. The clotkmeasures the sta-
bility time for the first requirement. Whenaup event is seen theoffeetransition
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c_event<=0

finished?

c2<=15
.’ ] cl>=2,c2<15
z_in_dot_207? z_coffee?
d c2<15 c2<
| _ 2
z_button? z_cup? z_out/dot_10?
i ?
z_in_dot_207 . ©2=0 . cl1:=0 2 <15
c2<=15 = _ z_ouf_dot_20?
c2<=15
107 c2K 15
c2<15 cl>=2,¢c2<15
z_cup? . 7 coffee? . z_\put_dot_20?
z_button? —g C2<=15 ~ c3<15
= dot_107?
c2:=0 2 <15 z_out_dot_10? z0 —
z_in_dgt_20? 2=t
z_in_dot_107? c2sm s .
cl>=2,¢c2%15 cl>=2/c2<15
. z_coffeg?
z_button? c2<=1
20 c2< l’? z_coffee? .
Z_cup >=2,c2<15
€2 <= c1:=0 c2<=15

Fig. 14 UPPAAL Model of our CSP-OZ-DC class

should stay enabled for two seconds. The clotks reset at all transitions that
communicate theup event and on the nexbffeetransition it is checked that the
stability time has elapsed.

In general the algorithm first determines the set of stateshich the coffee
event is enabled. For each transition entering this set gigo&ransition the clock
cl is reset and at each transition leaving the set the cloalevialcompared with
2. If there are transitions entering the state set withoutgythrough thecupevent
another copy of these states is created and the constraiot ishecked for this
copy.

For the progress constraint in the second formula the dhgoroutlined in Fig9
is executed. First the cloak? is added to the automaton. All states satisfying the
condition — (en(in) Vv en(button)) are annotated with the invarian2 < 15. All
transitions that enter this set of states reset the cloakalllyiall transitions from
this set except for thBnishedtransition are annotated with the guati< 15.

The state with the double circle represents the starting sththe UPPAAL
automaton. lIts state invariantevent< 0 ensures that it will be left immediately
to the real starting state of the FDR automaton. This coasistnecessary when
the real starting state is split as shown in Hi§.because UPPAAL needs a single
starting state.
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in_dot_20_complete

in_dot_10_complete button_z_CoffeeMachine

c_event>(
z_in_dot_20!

Qutton_complete

c_event:=0

cup_complete

finished_completg—ﬁxg;]tez,o

c_event:=0

c_event>0
z_out_dot 1

c_event>0
z_out_dot_20!

out_dot_10-Complete c_event:= coffee_complete

out_dot_20_complete

Fig. 15 Supervisor timed automaton

5.4 Model-Checking

As step (4) we consider the following real-time propertyleé ¥ending machine:
after pressing théuttonthe customer will wait no longer thanseconds for the
coffee. We wish to determine the exact value¢ ekperimentally using UPPAAL.

The customer is represented by a small timed automBdstwith a clockc_waiting
as shown in Figl6. It can be in one of two states, eithidre or waiting for coffee.
When the customer presses thdtonit changes to thevaiting state and resets the
clock c_waiting. This clock is used to measure the waiting time. When it ges t
coffeeit changes back talle again.

The test automaton operates in parallel with the coffee machs given in
Fig. 14 and asupervisorautomaton displayed in Fid5. The supervisor is the
link between these two automata; it also handles the everitsamsumed by the
test automaton. The supervisor starts in the double cicgeter state. When some
event occurs one of the outer states annotated @ithentered. In UPPAAL this
annotation marks so-callatbmmittedstates that must be left immediately. Their
purpose is to provide more information for the verificationgess. For instance,
the external evenbutton causes an internal eventbuttonto occur without any
time passing in between. Another task of the supervisor énsure our condition
that events cannot happen simultaneously (cf. subse8t®nTo this end, it uses
the clockc_eventto check that time has passeddvent> 0) before the next event
occurs, and resets this clock after each event.
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buttor, c_waiting:= 0
i aitin

Fig. 16: Automaton representing a customer testing the behaviour

Number| Max. value| Number of| Step (2) | Step (3) | Step (4)
of coins ofm states
2 40 16 0.3 6.9 <01
6 100 741 1.7 30.3 10.5
8 200 1822 3.9 180.6 62.1
8 400 4203 9.8 848.3 369.6

Fig. 17: Verification time (in seconds).

The whole system can be loaded into UPPAAL and the followiraperty can
be checked. It asserts that the customer is never waitingi$ocoffee for more
thant seconds.

Propp < A O Testidle v c.waiting <t

UPPAAL immediately returns an answer. It turns out thattfer 15 the property
is satisfied, for smaller numbers it is not.

5.5 Experimental Results

The table in Figl7 gives some timings for the steps outlined at the start of this
section. The times were measured on an UltraSPARC-II withNBiz. Step (2),
which involves running FDR, is quite fast. Most time is spienstep (3), which is
the addition of clocks to the automaton. It should be noted ¢lur program has
not been optimized.

We can easily change the OZ part to model systems of diffesigat The first
line in the table is for the timed automaton shown in Hid. Consider now larger
systems with more coins and larddoneysets. As shown in Fidl7, this yields au-
tomata with many more states. The tool scales better thairgti@to the number
of states.

6. Conclusion

In the introduction we put forward guidelines for a good camakion of specifi-
cation techniques. The case study of the railway crossirgjimtanded to show
how the different aspects of the system can be specified nmmntéy in the dedi-
cated specifications techniques for processes, data aad Tihe semantics of the
combination was based on the principles of parallel contiposand conjunction.
This implied refinement compositionality and led us to retosds and verification
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methods for a partially automatic verification. Anotheeigisting consequence of
our semantic integration of CSP, Object-Z and DC is that émeasentation of the
individual specification techniques may be freely exchdng®r example, we may
useconstraint diagram$Dietz 1996] to represent the DC formulas graphically and
link to other development processes [Dierks and Tapken]2000

Related work.The main idea of CSP-OZ-DC has been to combine three well-
researched specification techniques in a constrainttedestyle. Closest to our ap-
proach to semantic integration is [Smith 2002] where RémleTObject-Z [Smith
and Hayes 1999] is integrated with CSP. The idea is that C&Ratips serve to
combineclasses of Real-Time Object-Z, but in contrast to CSP-OZtb€e is
no CSP-parinside of classes. As we have seen in the examples, the CSP part is
convenient for specifying sequencing constraints on timenganications events.

In Real-Time Object-Z the timing properties are specifiedimninterval-based
set-theoretic notation [Fidget al. 1998]. We also use an interval-based approach
but in terms of the Duration Calculus [see Zhetial. 1991, Hansen and Zhou
1997]. To ensure that the CSP operators are well defined oRTRea Object-Z
classes, arfF D-semantics for these classes based on timed events is défined
[Smith 2002].

Another related work is TCOZ, a combination of Timed CSP [Bawand Schneider
1995] with Object-Z due to Mahony and Dong [1998, 1999]. A€iBP-OZ-DC
the CSP operators are allowed both inside and outside afedadHowever, here
Timed CSP with its operational constructs like waits, tinmsoand interrupts is
used. By contrast, CSP-OZ-DC uses the predicates of DC tofgpiene depen-
dencies between communications.

Verification. This paper goes beyond the above approaches by addressiitg ve
cation. We have exploited the transformational semanfi€S#-0OZ-DC for a par-
tially automatic verification of timing properties of comieid specifications. The
core of the method is a novel, systematic transformation SPOZ-DC classes
into timed automata that can be model-checked by the UPPAAL fThis poses
the question whether the timed automata semantics prodycéte algorithm of
Section5 is equivalento the DC semantics of Secti@ A proof of such an equiv-
alence is left for future work. However, similar equivaleruroofs between timed
automata and DC semantics are given in [Diezkal. 1998].

Perspectives Automatic verification works only for finite data types in t@&
part and certain patterns of timing constraints in the DQ.p&or infinite data
and more general DC formula one will need interactive vexifan techniques. In
a separate (yet unpublished) case study we have applietigbeetm prover KIV
[Balser et al. 1999] to prove refinement of the OZ parts in a high-level dpeci
cation by an implementation-level specification of a trabimtcoller for the radio
controlled railway crossing.

In this paper the DC part restricts only the timing of the caminations. In
general one would also like to restrict the timed behaviduhe class state. To
this end, we pursue the idea that the current state of the @Zspaade observable
by a special communication.
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