
Nordic Journal of Computing 9(2002), 301–334

CSP-OZ-DC: A COMBINATION OF
SPECIFICATION TECHNIQUES FOR

PROCESSES, DATA AND TIME∗

JOCHEN HOENICKE

ERNST-RÜDIGER OLDEROG
Department of Computing Science, University of Oldenburg

26111 Oldenburg, Germany
{hoenicke,olderog }@informatik.uni-oldenburg.de

Abstract. CSP-OZ-DC is a new combination of three well researched formal techniques
for the specification of processes, data and time: CSP [Hoare1985], Object-Z [Smith
2000], and Duration Calculus [Zhouet al.1991]. This combination is illustrated by spec-
ifying the train controller of a case study on radio controlled railway crossings. The tech-
nical contribution of the paper is a smooth integration of the underlying semantic models
and its use for verifying timing properties of CSP-OZ-DC specifications. This is done by
combining the model-checkers FDR [Roscoe 1994] for CSP and UPPAAL [Bengtssonet
al. 1997] for timed automata with a new toolf 2u that transforms FDR transition systems
and certain patterns of Duration Calculus formulae into timed automata. This approach is
illustrated by the example of a vending machine.

CR Classification: D.2.1, D.2.2, D.2.4, F.3.1, F.4.1

Key words: CSP, Object-Z, Duration Calculus, transformational semantics, real-time pro-
cesses, model-checking, FDR, UPPAAL

1. Introduction

Complex computing systems exhibit various behavioural aspects such as commu-
nication between components, state transformation insidecomponents, and real-
time constraints on the communications and state changes. Formal specification
techniques for such systems have to be able to describe all these aspects. Unfor-
tunately, a single specification technique that is well suited for all these aspects
is not yet available. Instead one finds various specialised techniques that are very
good at describing individual aspects of system behaviour.This observation has
led to research into the combination and semantic integration of specification tech-
niques. In this paper we combine three well researched specification techniques:
CSP, Object-Z and Duration Calculus.

Communicating Sequential Processes(CSP) were originally introduced by Hoare
[1978, 1985]. The central concepts of CSP are synchronous communication via

∗A preliminary version of this article, with different examples, appeared as the conference paper
[Hoenicke and Olderog 2002] published by Springer-Verlag.This research was partially supported
by the DFG under grant Ol/98-2.

Received March 20, 2002; accepted December 20, 2002

2 J. HOENICKE, E.-R. OLDEROG

channels between different processes, parallel composition and hiding of internal
communication. For CSP a rich mathematical theory comprising operational, de-
notational and algebraic semantics with consistency proofs has been developed
[Roscoe 1997]. Tool support comes through the FDR model-checker [Roscoe
1994]. The name stands for Failure Divergence Refinement andrefers to the stan-
dard semantic model of CSP, the failures divergence model, and its notion of pro-
cess refinement.

Z was introduced in the early 80’s in Oxford by Abrial as a set-theoretic and pred-
icate language for the specification of data, state spaces and state transformations.
The first systematic description of Z is [Spivey 1992]. Sincethen the language
has been published extensively (e.g. [Woodcock and Davies 1996]) and used in
many case studies and industrial projects. In particular, Zschemas and the schema
calculus enable a structured way of presenting large state spaces and their transfor-
mation. Object-Zis an object-oriented extension of Z [Smith 2000]. It comprises
the concepts of classes, inheritance and instantiation. Z and Object-Z come with
the concept of data refinement. For Z there exist proof systems for establishing
properties of specifications and refinements such as Z/EVES [Saaltink 1997] or
HOL-Z based on Isabelle [Kolyang 1997]. For Object-Z type checkers exist. Ver-
ification support is less developed except for an extension of HOL-Z [Smith et al.
2002].

Duration Calculus(DC for short) originated during the ProCoS (Provably Cor-
rect Systems) project [Heet al.1994] as a new logic and calculus by Zhouet al.
[1991] and Hansen and Zhou [1997] for specifying the behaviour of real-time sys-
tems. It is based on the notion of an observableobsinterpreted as a time dependent
functionobsI : Time→D for some data domainD. A real-time system is described
by a set of such observables. This links up well to the mathematical basis found
in classical dynamic systems theory [Luenberger 1979] and enables extensions to
cover hybrid systems. Duration Calculus was inspired by thework of Moszkowski
[1985, 1986] on interval temporal logic and thus specifies interval-based properties
of observables. Its name stems from its ability to specify the duration of certain
states in a given interval using the integral. By choosing the right set of observables,
real-time systems can be described at various levels of abstraction [see Ravnet al.
1993, Olderoget al.1996, Schenke and Olderog 1999, Dierks 2001]. Verification
support for the general DC is provided by Skakkebæk [1994] and Heilmann [1999]
using theorem provers, and for a more specialised application of DC by Dierks and
Tapken [2000] using a translation into timed automata for model-checking with
UPPAAL [Bengtssonet al.1997].

It is well known that a consistent combination of different specification tech-
niques is difficult [Hoare and He 1997]. Very popular is currently UML, the Uni-
fied Modeling Language [Boochet al.1999]. It collects all the widespread speci-
fication techniques for object-oriented systems in one language. There is even an
extension UML-RT [Selic and Rumbaugh 1998] intended to cover real-time sys-
tems. However, a closer examination shows that this extension is just able to deal
with reactive systems. A problem with UML is the missing semantic basis for this
huge language. It is still a topic of ongoing research to provide a semantics for
subsets of UML.

CSP-OZ-DC 3

crossing point

Fig. 1: Case study: Radio controlled railway crossings

We see the best chances for a well founded combination with specification tech-
niques that are well researched individually. As guidelines for good combinations
we propose the following:

◦ the strengths of the individual specifications techniques should be preserved,

◦ tools and verification methods should be reusable,

◦ the semantics of the combination should be easy to understand,

◦ different representations should be freely exchangeable,e.g. visual vs. tex-
tual.

An example of a clear combination of two specification techniques is CSP-OZ
developed by Fischer [1997, 2000]. In this paper we extend CSP-OZ by the aspect
of continuous real-time. This is done by combining it in a suitable way with DC.
The resulting specification language we call CSP-OZ-DC. Thepaper is organised
as follows. Section2 introduces the main constructs of CSP-OZ-DC. Section3
describes the semantics of the combination. Section4 employs it to specify a train
controller for the safety of railway crossings. Section5 shows how the semantics
can be utilized for a partially automatic verification of properties of CSP-OZ-DC
specifications, and applies this approach to a simple vending machine. Finally, we
conclude with Section6.

2. The Combination CSP-OZ-DC

In this section we introduce the new combined formalism by examples taken from
a case study of radio controlled railway crossings which is part of the priority
research program “Integration of specification techniqueswith applications in en-
gineering”1 of the German Research Council (DFG), see Fig.1. The main issue in
this study is to remotely operate points and crossings via radio-based communica-
tion while keeping the safety standard.

Fig. 2 surveys the controller architecture we want to specify in this case study.
The diagram shows several components connected by communication channels. In
the centre of the diagram is thetrain controller whose purposes are to limit the
speed of the train, to decide when it is time to switch points and secure crossings,
and to make sure that the train does not enter them too early. Theodometerkeeps
track of the speed and position of the train. The position is measured by various
means, e. g. counting the rotations of the wheels. Buried in the track are so-called
balises, which are devices with a unique identifier that can be read bythe train.

1 http://tfs.cs.tu-berlin.de/projekte/indspec/SPP/ind ex.html

4 J. HOENICKE, E.-R. OLDEROG

Radio controller

Train controller

Speed controllerOdometer

track atlas securedTrackElement

setMaxSpeed

setTrackElement

getPos
getSpeed

Fig. 2: Controller architecture

With the help of these balises the odometer can determine theabsolute position of
the train.

Thespeed controllersupervises the speed and makes sure that it does not exceed
the limit set by the train controller, otherwise it automatically slows down the train.
When the speed limit is set to zero, the train will break untilit comes to a safe halt.
The communication with points and crossings is done by theradio controller. As
said above, the communication medium is radio-based. Special care has to be
taken because radio transmissions are inherently unsafe. The safety must still be
established under the assumption that no message can be transferred.

2.1 Using CSP

To specify the train controller component several conceptsmust be handled, as
described in the following. The train controller communicates with other compo-
nents, e. g. the radio controller. Most of these communications are initiated by the
train controller itself, e. g. the train controller asks theodometer for the current
speed and position and sets the new speed limit. But there arealso communica-
tions initiated externally, e. g.securedTrackElement, which is sent when a crossing
affirms that it is safe. These communications can be easily modelled with CSP.

As an example we can model the loop supervising the speed in CSP by the fol-
lowing recursive equation:

SuperviseSpeed
c
= getSpeed→ getPos

→ calcMaxSpeed→ setMaxSpeed→ SuperviseSpeed

The symbol
c
= is used instead of an ordinary equals symbol to distinguish between

CSP process equations and Z equations. The process specifiesthat the four events
getSpeed, getPos, calcMaxSpeed(an internal communication) andsetMaxSpeed
are communicated in this order. For simplicity communication values are ignored

CSP-OZ-DC 5

here. This process can then work in parallel with other processes, for instance the
one handling thesecuredTrackElement:

SecuredHandler
c
= securedTrackElement?id

→ clearDangerPosition!id → SecuredHandler

main
c
= SuperviseSpeed|| SecuredHandler

Note that a value is communicated along the channelssecuredTrackElementand
clearDangerPosition. This value will later be used by the Z part, see below. Re-
ceiving and sending of a value is indicated by the symbols ? and ! according to the
CSP conventions.

2.2 Using Object-Z

The track atlascontains a data base with the crossings and points. The trainhas
to manipulate this data base to remember which track elements have already been
switched and which have affirmed their safety. Handling of data bases is easily
done with Object-Z (OZ). Starting from basic typesIdentifierandPositionwe can
define the track elements (crossings and points) by the Z schema

TrackElement
id : Identifier
pos: Position
. . .

This schema declares a new data typeTrackElement. Each element of this type
consists of several components listed inside the schema box. Each track element
has a unique identifierid. There is also a position associated with each track el-
ement, which is the position at which the train must stop if itcannot secure it.
The dots indicate that there is more information in the schema, e. g. to distinguish
crossings from points and to know in which direction to switch a point.

The track atlas contains information about track elements,the maximum speed
for each track segment, and all other information the train needs to know about
the track. It is also represented by a Z schema as follows. Thedefinition of
StaticProfileis not of interest here and is given in Sect.4. The type seqTrackElement
denotes finite sequences ofTrackElements.

TrackAtlas
staticprof : StaticProfile
elems: seqTrackElement

For each crossing that is not yet secured the train controller keeps its associated
positions in a setdangerPositions. Together with the track atlas this forms the
state space of the train controller. The state space of a OZ class is denoted by an
unnamed schema.

6 J. HOENICKE, E.-R. OLDEROG

trackatlas: TrackAtlas
dangerPositions: PPosition

Initially for every track element in the track atlas the corresponding danger po-
sition is set, to make sure that the train cannot pass it. In OZthe initial state is
described by anInit schema like this:

Init
dangerPositions= {elem: rantrackatlas.elems• elem.pos}

The set on the right side contains elements of the formelem.poswhereelemranges
over the elements in the sequencetrackatlas.elems. The operator ran is used here
to convert a sequence into the set of its elements.

When a value, i.e. positionid, is received on channelsecuredTrackElement, the
train controller has to remove this position from the set of danger positions. The
handling of the communication eventclearDangerPosition!id is done by the CSP
processSecuredHandler, but we have to link this event with an update of the data
base. This is done by writing a communication schema forclearDangerPosition,
i.e. a Z-schema specifying the operation associated with that communication event.

com clearDangerPosition
∆(dangerPositions)
id? : Identifier

dangerPositions′ = dangerPositions\
{elem: rantrackatlas.elems| elem.id = id?• elem.pos}

The prefixcom of the schema name indicates that this is a communication scheme.
It is possible to decompose communication schemas into enable and effect schemas
[Fischer 2000] but we shall not pursue this here. The∆ in the first line of the
schema declares that this operation may only changedangerPositions. The next
line declares a parameterid, decorated with ? to signify thatid is an input param-
eter. Notice that this naming convention of Z corresponds nicely with the naming
conventions of CSP: the output ofid along channelclearDangerPositionsynchro-
nises with the input ofid in the Z schema. In Z the transformation of a state is
expressed by a relation between the state before the operation and the state after
the operation. The second state is distinguished from the first one by decorating it
with a prime. The predicate relating the two states is given below the horizontal
line. In this case all positionselem.pos are removed, whereelem is an element
from the sequencetrackatlas.elemsthat has the identifierid?.

2.3 Using Duration Calculus

To maintain safety, the train has to supervise the track repeatedly and must set the
speed limit in time. This requires real-time constraints. Another aspect where real-

CSP-OZ-DC 7

time is important is the securing of crossings. If the train secures them too early,
the traffic is unnecessarily blocked. If the train secures them too late, there is not
enough time to close the gate before the train reaches the crossing.

For specifying real-time constrains, we use Duration Calculus (DC). It is a interval-
based real-time logic and calculus developed by Zhouet al. [1991]. It can be ap-
plied for specifying both high-level requirements and implementation-level details
of real-time systems.

In DC state assertions Pdescribe time dependent properties of observablesobs:
Time→ D. Duration termsdescribe interval-based real values. The name of the
calculus stems from terms of the form

∫
P measuring thedurationof a state asser-

tion P, i.e. the accumulated time thatP holds in the considered interval. The sim-
plest duration term is the symbolℓ abbreviating

∫
1 and thus denoting thelengthof

the given interval.Duration formulae F,G describe interval-based properties. For
example,⌈P⌉ abbreviates

∫
P= ℓ ∧ ℓ > 0 and thus specifies thatP holds (almost)

everywhere on a non-point interval. A point interval is specified by ⌈⌉, which ab-
breviates the formulaℓ= 0. Sequential behaviour is modelled by thechopoperator
“ ;”: the formulaF ; G specifies that firstF and thenG holds. The formula✸F
abbreviatestrue; F ; trueand thus expresses that on some subintervalF holds. The
dual✷F abbreviates¬✸¬F and thus states thatF holds on all subintervals. For
more details see [Hansen and Zhou 1997].

A subset of the DC is calledimplementablesdue to Ravn [1995], which make
use of the following idioms wheret ∈ Time:

F −→ ⌈P⌉ == ✷¬(F ; ⌈¬P⌉) [followed-by]

F
t

−→ ⌈P⌉ == (F ∧ ℓ= t)−→ ⌈P⌉ [leads-to]

F
≤t
−→ ⌈P⌉ == (F ∧ ℓ≤ t)−→ ⌈P⌉ [up-to]

F −→0 ⌈P⌉ == ¬(F ; ⌈¬P⌉) [followed-by-initially]

F
≤t
−→0 ⌈P⌉ == (F ∧ ℓ≤ t)−→0 ⌈P⌉ [up-to-initially]

F
t

−→0 ⌈P⌉ == (F ∧ ℓ= t)−→0 ⌈P⌉ [leads-to-initially]

Intuitively, F −→ ⌈P⌉ expresses that whenever a pattern given by the formulaF
is observed, it will be “followed by” an interval whereP holds. In the “leads-to”
form the pattern is required to have a lengtht and in the “up-to” form it is bounded
by a length “up to”t. Note that the “leads-to” does not simply say that whenever
F holds thent time units later⌈P⌉ holds, but it rather requires astability of F for
t time units before we can be certain that⌈P⌉ holds. Theinitially variants require
the above behaviour only starting at time 0.

As an example consider the following DC formula which statesthat the next
setMaxSpeedcommunication must occur after at most one second:

⌈ct(setMaxSpeed) = n⌉
1s
−→ ⌈ct(setMaxSpeed) > n⌉

In DC all observations must have a duration in order to be visible. CSP events,
however, happen at a single point in time, so we cannot observe them directly.
Therefore we count the number of times they occur and reason about this count.
The above formula states that if the number ofsetMaxSpeedevents stays stable

8 J. HOENICKE, E.-R. OLDEROG

TrainController
chan getPos: [p? :Position] . . . [interface channels]
local chan clearDangerPosition: [id? : Identifier] . . .

[local channels]

main
c
= . . . [CSP part]

[OZ part consisting of ...]

trackatlas: TrackAtlas [state space]
dangerPoints: PPosition

Init
. . . [initial schema]

com clearDangerPosition
. . . [communication schemas]

⌈. . .⌉
1s
−→ ⌈. . .⌉ [DC part]

Fig. 3: Class in CSP-OZ-DC

for one second, then the event has to occur afterwards so thatct(setMaxSpeed)
increases.

2.4 Specifying Classes and Systems

The basic building block in our combined formalism CSP-OZ-DC is a class. Its
syntax is as in CSP-OZ [see Fischer 1997, 2000], only the DC part is new, see
Fig. 3. First, the communication channels of the class are declared. Every channel
has a type which restricts the values that it can communicate. There are also local
channels that are only visible inside the class and through which the CSP, OZ,
and DC parts interact. Second, the CSP part follows; it is given by a system of
(recursive) process equations. Third, the OZ part is given which itself consists of
the state space, the Init schema and communication schemas specifying in which
way the state should be changed when the event occurs. Finally, below a horizontal
line the DC part is stated.

Classes can be combined into larger specifications by the CSPstructuring opera-
tors, i.e. parallel composition, renaming and hiding [Roscoe 1997]. This allows us
to describe architectures like the one in Fig.2.

CSP-OZ-DC 9

3. Semantics

Each class of a CSP-OZ-DC specification denotes a time dependent process. Here
we describe how to define this process in a transformational way.

3.1 Semantics of the constituents

We begin by recalling the semantic domains of the constituent specification tech-
niques. The standard semantics of untimed CSP is theF D-semantics based on
failures and divergence [Roscoe 1997]. Afailure is a pair(s,X) consisting of a
finite sequence ortrace s∈ seqCommover a setCommof communications and a
so-calledrefusal set X∈ PComm. Intuitively, a failure(s,X) describes that after
engaging in the traces the process can refuse to engage in any of the communica-
tions inX. Refusal sets allow us to make fine distinctions between different non-
deterministic process behaviour; they are essential for obtaining a compositional
definition of parallel composition in the CSP setting of synchronous communica-
tion when we want to observe deadlocks. Formally, we define the sets

Traces== seqComm and Refusals== PComm,
Failures== Traces×Refusals.

A divergenceis a trace after which the process can engage in an infinite sequence
of internal actions. TheF D-semanticsof CSP is then given by two mappings

F : CSP→ PFailures and D : CSP→ PTraces.

For a CSP processP we writeF D[[P]] = (F [[P]] , D[[P]]). Certain well-formedness
conditions relate the values ofF andD [see Roscoe 1997, p.192]. TheF D-
semantics induces a notion ofprocess refinementdenoted by⊑F D . For CSP pro-
cessesP andQ this relation is defined as follows:

P⊑F D Q iff F [[P]]⊇ F [[Q]] and D[[P]]⊇D[[Q]]

Intuitively, P⊑F D Q means thatQ refinesP, i.e. Q is more deterministic and more
defined thanP.

Instead of the negative information of refusal sets one can also use positive in-
formation about the future process behaviour in terms of so-calledacceptance sets.
For a tracesan acceptance setA∈ PCommdescribes a set of communications that
are possible afters. The set of all initial communications afters is the largest ac-
ceptance set afters. Fig. 4 exhibits the refusal and acceptance sets after the empty
trace of the processa→ Stop ⊓ b→ Stop .

Acceptance sets are due to De Nicola and Hennessy [1983] and Hennessy [1988]
who developed an approach to testing of processes that resulted in a process model
equivalent to the failures divergence model but with acceptance sets instead of
refusal sets. Acceptance sets satisfy certain closure properties [see Hennessy 1988,
p.77]. For example, they are closed under union.

Acceptance sets are discussed also in [Roscoe 1997, p. 278] as a means of normal
form representation of CSP processes. However, in contrastto Hennessy and De

10 J. HOENICKE, E.-R. OLDEROG

Refusal sets:

{},{b},{a},
all sets withouta,
all sets withoutb

❅❅❘
✟✟✟✟✟✙

τ ❍❍❍❍❍❥

τ

❄

a
❄

b Acceptance sets:

{a},{b},{a,b}

Fig. 4: Refusal and acceptance sets

Nicola’s approach, there for each traces only the minimal acceptance sets after
s together with the set of all initial communications afters, which is the largest
acceptance sets afters, are considered.

Formally, let

Acceptances== PComm

andA be the process semantics

A : CSP→ P(Traces×Acceptances)

based on acceptance sets instead of refusal sets.AD-semantics is the process se-
mantics based onA andD. We writeAD[[P]] = (A [[P]] , D[[P]]) for a CSP process
P. Then the following proposition on process refinement holds:

PROPOSITION1. P⊑F D Q iff A [[P]]⊇ A [[Q]] andD[[P]]⊇D[[Q]]

Thus we do not lose any process information by taking acceptance sets instead of
refusal sets. Since our approach to verification will be based on acceptance sets,
we shall represent here the semantics of untimed CSP onA andD.

Object-Z (OZ) describes state spaces as collections of typed variables, sayx
of type Dx, and their possible transformation with the help of action predicates
A(x,x′), for examplex′ ≥ x+1, where the decorated versionx′ represents the value
of x after the transformation. The language comes with the usualnotion of data
refinement[Woodcock and Davies 1996].

Duration Calculus (DC) specifies properties of observablesobs interpreted as
finitely varyingfunctions of the formobsI : Time→D for a continuous time domain
Timeand a data domainD (see Fig.5). The concept offinite variability means that
the functionobsI has at most finitely many discontinuity points in any finite time
interval. As a consequence the integral (duration) operator of DC is well-defined
and an induction rule for DC is valid [Hansen and Zhou 1997].

When modelling real-time systems in Duration Calculus,refinementis repre-
sented by logical implication⇒, i.e. for duration formulaeF,Gwe sayF refines Giff F ⇒
G. As examples we state two refinement laws for DC implementables due to Ravn
[1995].

PROPOSITION2. Let P,Q be state assertions and t, t′ ∈ Time with t≤ t′.

CSP-OZ-DC 11

D

Time
b e

Fig. 5: Finitely varying function

(a) Decreasing the upper time bound of a reaction is a refinement, i.e. we have

⌈P⌉
t

−→ ⌈Q⌉⇒ ⌈P⌉
t′

−→ ⌈Q⌉.
(b) Increasing the lower time bound of a stability is a refinement, i.e. we have

⌈P⌉
≤t′
−→ ⌈Q⌉⇒ ⌈P⌉

≤t
−→ ⌈Q⌉.

3.2 Untimed semantics of CSP-OZ classes

The untimed semantics of the combination CSP-OZ is defined inFischer [1997,
2000]. The idea is that each CSP-OZ class denotes a process inthe semantic model
of CSP. This is achieved by transforming the OZ part of such a class into a CSP
process that runs in parallel and communicates with the CSP part of the class.
Consider a CSP-OZ class

U

I [interface]
L [local channels]
P [CSP part]
Z [OZ part]

also written horizontally asU =̂ spec I L P Z end with an OZ part

Z

st : State [state space]
Init(st) [initial condition]
...com c(st, in?,out!,st′)...

[one communication schema for each c in I or L]

where the notationcom c(st, in?,out!,st′) indicates that this communication schema
for c relates the statest to the successor statest′ and has input parametersin? and
output parametersout!.

The OZ part of the class is transformed into a CSP processOZMaindefined by
the following system of (parametrised) recursive equations for OZpart using the

12 J. HOENICKE, E.-R. OLDEROG

(indexed) CSP operators for internal nondeterministic choice (⊓) and alternative
composition (✷):

OZMain = ⊓st
OZPart(st)

OZPart(st) = ✷c, in? ⊓out!, st′
c.in?.out! → OZPart(st′)

wherest ranges over all states inStatesatisfyingInit(st). Thus the processOZMain
can nondeterministically choose any statest satisfyingInit(st) to start with. Fur-
ther on,c ranges over all channels declared inI or L, andin? ranges over the set
Inputs(c) such that the condition

∃out! : Outputs(c); st′ : State′ • com c(st, in?,out!,st′)

holds. Finally, for any chosencandin?, the valueout! ranges over the setOutputs(c),
andst′ ranges overState′ such that

com c(st, in?,out!,st′)

holds. So theOZPart(st) is ready for every communication eventc.in?.out! along
a channelc in I or L where for the input valuesin? the communication schema
com c(st, in?,out!,st′) is satisfiable for some output valuesout! and successor state
st′. For given input valuesin? any suchout! and st′ can be nondeterministically
chosen to yieldc.in?.out! and the next recursive callOZPart(st′). Thus input and
output along channelsc are modelled by a subtle interplay of the CSP alternative
and nondeterministic choice.

OZMainruns in parallel with the explicit CSP processP of the class:

procU = P [| Events(I ∪L) |] OZMain

Here the parallel composition synchronises on all events inI andL. In [Fischer
1997, 2000] the semantics of the classU is then defined by

F D[[U]] = F D[[procU \Events(L)]]

where all events along local channelsL are hidden. Hiding in untimed CSP makes
communications occur autonomously without delay. Thus hiding can cause non-
determinism and divergence.

By the above process semantics of CSP-OZ, the refinement notion ⊑F D is im-
mediately available for CSP-OZ. One of our guidelines for combining specification
techniques isrefinement compositionality, i.e. refinement of the parts should imply
refinement of the whole. The following theorem is shown in [Fischer 2000]:

THEOREM 1. (a) Process refinement P1 ⊑F D P2 implies refinement in CSP-OZ:
spec I L P1 Z end ⊑F D spec I L P2 Z end

(b) Data refinement Z1 ⊑ρ Z2 for a refinement relationρ implies refinement in CSP-
OZ: spec I L P Z1 end ⊑F D spec I L P Z2 end

CSP-OZ-DC 13

3.3 Timed semantics of CSP-OZ-DC classes

The semantic idea of the combination CSP-OZ-DC is that each class denotes a
timed process. To this end, we lift the semantics of CSP and OZonto the level of
time dependent observables. In the timed setting the behaviour of internal actions
has to be studied carefully. We distinguish between internal τ actions inherited
from the untimed CSP setting and internalwait actions induced by hiding commu-
nications with a certain timing behaviour. Whereas internal τ actions do not take
time and can thus be eliminated in accordance with theF D-semantics, possibly
inducing nondeterminism or divergence, internalwait actions let time pass before
the next visible communication can occur. Whereas an infinite sequence ofτ ac-
tions is equivalent to divergence, an infinite sequence of wait actions is equivalent
to deadlock.

For the simplicity of the subsequent exposition, we assume that the untimed part
is divergence free, formally:D[[procU]] = ∅. Then the semantics of CSP-OZ-DC
will associate with each specification of the combined language a timed process
consisting of a set of time dependent traces and time dependent acceptances:

ATime : CSP-OZ-DC→ P((Time→ Traces)× (Time→ Acceptances))

For a CSP-OZ-DC specificationS its semanticsATime[[S]] will be described by a
DC formula in the observablestr andAcc interpreted as finitely varying functions

trI : Time→ Traces and AccI : Time→ Acceptances.

This DC formula denotes the set of all interpretations oftr andAcc that make the
formula true; thus it will be identified withATime[[S]].

We explain the details first for a CSP-OZ-DC classC, which augments the un-
timed CSP-OZ classU by a timing partT expressed in DC:

C

U [untimed components]

T [DC part]

We shall also expandC horizontally into

C =̂ spec I L P Z T end.

The semantics ofC is obtained by taking the CSP processprocU defined for the
CSP-OZ classU but interpreting it in the setting of the time dependent observables
tr andAcc, and then conjoining it with the time dependent restrictions expressed
in the DC partT. SinceprocU is still an untimed process, its semantics in terms
of tr andAccwill allow any time dependent behaviour. More precisely, given the
untimed acceptance semantics ofprocU , which we assumed to be divergence free,
i.e.

A [[procU]] : P(Traces×Acceptances) with D[[procU]] =∅,

14 J. HOENICKE, E.-R. OLDEROG

we define its timed semantics as the DC formula

ATime[[procU]]⇔ FU ∧ F1 ∧ F2 ∧ F3

in the observablestr andAccwith subformulaeFU,F1−F3 given as follows:

FU : ✷⌈(tr,Acc) ∈ A [[procU]]⌉

requires that the values of the observablestr andAccare taken from the untimed
acceptance semantics ofprocU .

F1 : ⌈⌉ ∨ ⌈tr = 〈〉⌉; true

requires that initially the trace is empty.

F2 : ✷∀h,h′ • (h 6= h′ ∧ ⌈tr = h⌉; ⌈tr = h′⌉)⇒∃c,v • h′ = ha 〈c.v〉

requires that the trace can only grow and that one communication event occurs at a
time. The modality✷ quantifies over all subintervals of a given time interval, and
; is the chop operator of interval temporal logic used in DC. Thus the subformula
⌈tr = h⌉; ⌈tr = h′⌉ holds in a given time interval if on a first non-point interval
the tracetr assumes the valueh and on a second non-point interval it assumes the
valueh′. By F2, h′ can differ fromh only by one communication event. Together
with the restriction to finite variability (cf. subsection3.1), we thus require that
only finitely many communication events occur within any finite time interval and
that one communication event occurs at a time. Consequentlyin our semantics a
non-zero time passes between successive events. Finally,

F3 : ✷∀h,c,v • (⌈tr = h⌉; ⌈tr = ha 〈c.v〉⌉ ⇒

(⌈tr = h⌉ ∧ (true; ⌈c.v∈ Acc⌉)); ⌈tr = ha 〈c.v〉⌉)

requires that every communicationc.v can occur only with prior appearance in an
acceptance set.

Only the DC partT can actually restrict this behaviour in a time dependent man-
ner. To this end,T has limited access to the observablestr andAccvia the expres-
sionsct(X) anden(X) whereX is a set of communication events. By definition,

ct : PComm→ N

∀X : PComm• ct(X) = #(tr ⊲X)

In Z a finite sequencetr = 〈a1, ...,an〉 is represented as a mapping of the form
{1 7→ a1, ...,n 7→ an}. Then tr ⊲X restricts the range of this mapping to those
elements withai ∈ X. The operator # counts the remaining elements in this set.
Thusct(X) counts the number of occurrences of events fromX in the tracetr. Next

en: PComm→ B

∀X : PComm• en(X)⇔ X ⊆ Acc

CSP-OZ-DC 15

Thusen(X) records whether all events fromX can be accepted next. It is for this
definition of enabledness that acceptance sets are easier touse than refusals. This
motivated our choice of the semantic representation. For a single communication
eventc.v we write ct(c.v) anden(c.v) instead ofct({c.v}) anden({c.v}). Using
these expressions we can specify timing constraints for thevisible communica-
tions.

Altogether the semantics of the timed classC is given by the formula

ATime[[C]]⇔ hide L • (FU ∧ F1 ∧ F2 ∧ F3 ∧ T)

where all communications along the local channels inL are hidden. For a DC
formulaF in the observablestr andAccwe define

hide L • F ⇔ ∃ tr0,Acc0 •

((⌈⌉ ∨ ⌈tr = squash(tr0−⊲L) ∧ Acc= Acc0\L⌉) ∧

F[tr0/tr,Acc0/Acc])

For a finite sequencetr0 = 〈a1, ...,an〉= {1 7→ a1, ...,n 7→ an} therange subtraction
tr0−⊲L of Z removes all pairsi 7→ ai with ai ∈ L. This may result in a mapping which
is not a sequence any more (due to missing indices), for instance tr0 −⊲ {a1} =
{2 7→ a2, ...,n 7→ an}. The operatorsquashtransforms this mapping into a proper
sequence, heresquash(tr0−⊲{a1}) = {1 7→ a2, ...,n−1 7→ an}.

Thustr is a trace resulting fromtr0 by removing all communications inL, and
hide L • F is a DC formula in the observablestr andAccwith values linked via
the substitutionF[tr0/tr,Acc0/Acc] to the original values of these observables in
F. It describes the timed semantics of the CSP hiding operator.

3.4 Timed Semantics of System Specifications

System specificationsS are obtained by combining class specifications with the
CSP operators for parallel composition, renaming and hiding. Thus a typical spec-
ification could be of the form

S= (C1[R1] ‖ C2[R2])\L.

Renaming, denoted by the postfix operator[R], whereR is a binary relation be-
tween events, is used to change the names of communication events. The semantic
definition is straightforward.Hiding, denoted by the postfix operator\L, is used to
make all communication events in setL internal. Semantically, hiding is defined
using the operatorhide L • F introduced above.

The parallel composition C1[R1] ‖ C2[R2] is a special case of thealphabetised
parallel C1[R1] A‖B C2[R2] whereA andB are the sets of interface events of the
componentsC1[R1] andC2[R2]. For DC formulaeF1 andF2 in the observablestr
andAcc the semantics of the alphabetised parallel can be expressed, similarly to
[Schenke and Olderog 1999], by the following DC formula:

F1 A‖B F2 ⇔ ∃ tr1, tr2,Acc1,Acc2 •

16 J. HOENICKE, E.-R. OLDEROG

((⌈⌉ ∨ ⌈tr ∈ seq(A∪B) ∧ tr ↾A= tr1 ∧ tr ↾B= tr2 ∧

Acc= (A∩B∩Acc1∩Acc2)∪

((A\B)∩Acc1)∪

((B\A)∩Acc2)⌉) ∧

F1[tr1/tr,Acc1/Acc] ∧ F2[tr2/tr,Acc2/Acc])

Intuitively, F1 A‖B F2 describes a combination where the left-hand process is al-
lowed to engage in those events ofA that satisfyF1, the right-hand process is
allowed to engage in those events ofB that satisfyF2, and both must synchronise
on every event in the intersectionA∩B.

For traces this is formalised using thefilter or projection function ↾ of Z. If tr
is a finite sequence,tr ↾A is the largest subsequence oftr containing only those
elements that belong to the setA. Note thattr ↾A = squash(tr ⊲A) holds. For
instance, iftr = 〈a,a,b,c,d,d,e〉 then tr ↾ {a,d} = 〈a,a,d,d〉. Thus F1 A‖B F2

describes all tracestr over the joint alphabetA∪B such that the projectionstr ↾A
andtr ↾B are consistent with the formulaeF1 andF2. For the common acceptance
setAcc three cases are distinguished: inside the synchronisationsetA∩B of all
events are taken that can be accepted byboth F1 andF2, inside the set difference
A\B all events are taken that can be accepted byF1, and inside the set difference
B\A all events are taken that can be accepted byF2.

The refinementrelation between classes or between specifications of the same
interface is modelled by (reverse) logical implication in the semantic domain: a
classC2 refinesa classC1, abbreviated by

C1 ⊑ C2, iff ATime[[C2]]⇒ ATime[[C1]]

holds. We show thatrefinement compositionalityholds also for CSP-OZ-DC.

THEOREM 2. (a) Process refinement P1 ⊑F D P2 implies refinement in CSP-OZ-
DC: spec I L P1 Z T end ⊑ spec I L P2 Z T end

(b) Data refinement Z1 ⊑ρ Z2 for a refinement relationρ implies refinement in CSP-
OZ-DC: spec I L P Z1 T end ⊑ spec I L P Z2 T end

(c) Time constraint refinement T2⇒T1 implies refinement in CSP-OZ-DC:spec I L P Z T1 end ⊑
spec I L P Z T2 end

PROOF. Properties (a) and (b) are immediate consequences of Theorem1 and the
monotonicity ofFU w.r.t. refinements of the untimed classU. For instance, for (a)
let Ui = spec I L Pi Z end andCi = spec I L Pi Z T end wherei = 1,2. Then

P1 ⊑F D P2

implies U1 ⊑F D U2 (by Theorem 1)

implies A [[procU2]]⊆ A [[procU1]] (by Proposition 1)

implies FU2 ⇒ FU1 (by the monotonicity ofFU)

implies ATime[[C2]]⇒ ATime[[C1]] (by the form ofATime[[C]])

implies C1 ⊑ C2 (by the definition of⊑)

CSP-OZ-DC 17

crossing point
danger positiondanger position

speed profile

dynamic speed profile

static speed profile end of track

dynamic profile if danger position is enabled

Fig. 6: Braking curve

Property (c) follows from the conjunctive form of the formulaATime[[C]]. ✷

By this theorem, it is possible to reuse verification techniques for the components
of a CSP-OZ-DC specification to prove refinement results for the whole specifica-
tion. However, when the desired property of the whole specification depends on the
semantic interplay of the components, more sophisticated verification techniques
are needed. In Section5 we develop one such a technique.

4. Case Study

In Section2 we have already introduced the case study of a radio controlled rail-
way crossing. In this section we want to take a closer look at the train controller,
especially how it calculates the maximum speed. A central concept is thebrak-
ing curve, see Fig.6, which is a function that gives for each position on the track
the maximum admissible speed. The braking curve consists oftwo parts: a static
profile, a step function giving the admissible speed for eachtrack segment, and a
dynamic profile which takes care of unsafe crossings and of the braking character-
istics of the train.

Before we go into the details of the braking curve, we first declare the basic data
types in our case study.Identifier andDirection are abstract types,Positionand
Speedare represented by real numbers.

[Identifier,Direction]
Position==R

Speed==R

StaticProfile== seq(Position×Speed)

As said above theStaticProfileis a step function. It is represented here as a finite
sequence of speed changes, each consisting of a position anda corresponding max-
imum speed. After such a change the speed remains constant until the position of
the next change is reached.

18 J. HOENICKE, E.-R. OLDEROG

For each crossing that has not affirmed its safety, a danger position in front of
the crossing is set and in the dynamic profile the corresponding position gets a
maximum speed of zero. To take care of the braking characteristic, there is a fixed
function brakingDist that gives for each speed the maximum distance the train
needs to get to a safe halt. In Z this is a monotone function from speed to position
(distance).

brakingDist: Speed→ Position

∀s,s′ : Speed| s≤ s′ • brakingDist(s) ≤ brakingDist(s′)

With this function it is possible to calculate the dynamic profile. The calculation
is straightforward, so we do not go into details here. It is specified as a function
calcProfile taking a static profile and a set of danger positions as arguments and
returning the dynamic speed profile as a function from position to maximum ad-
missible speed.

calcProfile: StaticProfile×PPosition→ (Position→ Speed)

In Section2 we have already introducedTrackElementand TrackAtlas. Here
we give the full definition. A track element has a unique identifier id and can be
either a crossing or a point. The associated danger positionis stored inpos. The
componentsetposgives the position where the train should send the set command.
The last fielddir is only meaningful for points and specifies the direction in which
it should be switched.

TrackElement
id : Identifier
type: {crossing,point}
pos: Position
setpos: Position
dir : Direction

The track atlas contains the static profile as well as a sequence of track elements.

TrackAtlas
staticprof : StaticProfile
elems: seqTrackElement

Using these types we now specify theTrainController as a CSP-OZ-DC class.
We concentrate on the parts relevant for the braking curve, see Fig.7. The external
interface of this class was already depicted in Fig.2. Notice, however, that here
the values communicated over these channels are specified using Z schema types.
The local channelssetDangerPosition, clearDangerPositionandcalcMaxSpeedare
internal communication channels used to link the CSP and OZ part. The CSP
processes already occurred in Section2, but here we also show the communicated
data.

CSP-OZ-DC 19

The state space of the train controller consists of thetrackatlas, a set ofdangerPositions
and the dynamic speed profiledynProf. The latter is calculated from the first
two. In Object-Z this is represented by putting the dependent variable below a∆-
sign. This sign indicates thatdynProfmay change implicitly whendangerPositions
changes. The formula definingdynProf in terms of the other variables is written
below the horizontal line. This formula is also called aclass invariant.

The operationcalcMaxSpeedbasically looks up the maximum speed for the cur-
rent position in the dynamic speed profile. But to make the train controller safe it
must look a short time into the future. This is done byreactDistwhich calculates
the maximum position the train may reach within its reactiontime. The reaction
time can be calculated from the first DC formula: thesetMaxSpeedevent occurs ev-
ery second. Since the CSP part requires agetPosevent between twosetMaxSpeed
event, the maximum time betweengetPosandsetMaxSpeedis also a second. So
at most two seconds after the lastgetPosevent thesetMaxSpeedis called a second
time with updated values.

This is the reaction time of the train controller. To this time we can add the
reaction time of theSpeedControllerto get the total reaction time. So assuming
that the maximum speed of the train is given in a variablemaxSpeedthe maximum
distance the train may pass in two seconds reaction time can be over-approximated
and calculated by the following formula.

reactDist: Speed→ Position

∀s : Speed• reactDist(s) = maxSpeed∗ reactTime

The second DC formula gives an example of theenablepredicate. It is used
to check whether thesetTrackElementcommunication is possible. This event is
possible whenever the position in thesetposcomponent of this track element was
reached and the element was not notified yet. WheneversetTrackElementis en-
abled it should occur after at most one second.

The last DC formula specifies that the danger position for a secured track element
should be set again five minutes after thesetTrackElementevent was issued. Nor-
mally the train should have passed the corresponding track element by that time,
otherwise the train must consider it as unsafe again.

The overall specification of the control system is given by the parallel composi-
tion of the classes corresponding to Fig.2, of which we have exhibited (part of) the
classTrainController:

Spec= TrainController‖ RadioController‖ Odometer‖ SpeedController

5. Verification

We exploit the transformational semantics given in Section3 for a partially auto-
matic verification of properties of CSP-OZ-DC specifications satisfying the follow-
ing restrictions: the CSP part represents a finite-state process, the OZ data types
are finite, and the DC part obeys certain patterns described below. Our approach
builds on existing tools and techniques:

20 J. HOENICKE, E.-R. OLDEROG

TrainController
chan getPos: [p? :Position]; getSpeed: [s? :Speed]
chan setMaxSpeed: [s! : Speed]
chan setTrackElement: [id! : Identifier; dir! : Direction]
chan securedTrackElement: [id? : Identifier]
local chan setDangerPosition,clearDangerPosition: [id? : Identifier]
local chan calcMaxSpeed: [p? :Position; s? :Speed; maxs! : Speed]

main
c
= SuperviseSpeed|| SecuredHandler

SuperviseSpeed
c
= getSpeed?speed→ getPos?pos

→ calcMaxSpeed!pos!speed?maxs
→ setMaxSpeed!maxs→ SuperviseSpeed

SecuredHandler
c
= securedTrackElement?id

→ clearDangerPosition!id → SecuredHandler

trackatlas: TrackAtlas
dangerPositions: PPosition
∆
dynProf : Position→ Speed

dynProf= calcProfile(trackatlas.staticprof,dangerPositions)

Init
dangerPositions= {elem: rantrackatlas.elems• elem.pos}

com setDangerPosition
∆(dangerPositions)
id? : Identifier

dangerPositions′ = dangerPositions∪
{elem: rantrackatlas.elems| elem.id = id?• elem.pos}

com clearDangerPosition [see Section 2]
com setTrackElement [definition omitted here]

com calcMaxSpeed
p? :Position
s? :Speed
maxs! : Speed

let endp= p?+ reactDist(s?) •
maxs! = mindynProf(| [p?,endp] |)

⌈ct(setMaxSpeed) = n⌉
1s
−→ ⌈ct(setMaxSpeed)> n⌉

⌈en(setTrackElement) ∧ ct(setTrackElement) = n⌉
1s
−→ ⌈ct(setTrackElement)> n⌉

(⌈ct(setTrackElement.id) = n⌉; (ℓ= 300s∧ ⌈ct(setTrackElement.id)> n
∧ ct(setDangerPoint.id) = m⌉))−→ ⌈ct(setDangerPoint.id)> m⌉

Fig. 7: ClassTrainController

CSP-OZ-DC 21

CSP
sequences of

events

Object-Z

data

Duration
Calculus

timing

CSP
(1)

(2)
FDR

f2u
(3)

UPPAAL

(4)
Test

✔ ✘

Fig. 8: Procedure for model-checking

◦ for dealing with CSP we use the FDR model-checker [see Roscoe1994,
Formal Systems (Europe) Ltd 1995],

◦ for dealing with Object-Z we use the transformation into CSPfirst described
by Fischer and Wehrheim [1999],

◦ for dealing with timing properties we use the model-checkerUPPAAL [Bengts-
sonet al.1997] for timed automata.

Additionally, we use a new tool, calledf 2u, described below. The idea is as follows.
Given a classC =̂ spec I L P Z T end we proceed in four steps as illustrated in
Fig. 8:

(1) Transform the untimed processU = spec I L P Z end into FDR-CSP, the
input language of the FDR model-checker for CSP.

(2) Apply the FDR model-checker to output a transition system TSU for U with
acceptance sets.

(3) Use our new tool,f2u, to transform this transition systemTSU into a timed
automatonAC representing all the timing restrictions of the DC partT of C.

(4) Verify properties of the classC by applying the model-checker UPPAAL to
AC.

A direct automatic treatment of the DC part is not feasible because for DC only
interactive verification support is available [see Skakkebæk 1994 and Heilmann
1999]. Also the model-checker of Tapken [2001] is not operating on DC but on
phase automata. Hence the transformation step (3) is needed.

Although step (1) represents just the CSP processOZMain of Section3, it re-
quires user interaction to represent the statest and the communications schemas
com c(st, in?,out!,st′) in FDR-CSP [see Fischer and Wehrheim 1999]. Steps (2)

22 J. HOENICKE, E.-R. OLDEROG

and (3) proceed fully automatically. Step(4) requires again user interaction in the
construction of certain test automata.

5.1 Transforming DC patterns

New is step (3). The DC patterns for timing restrictions thatcan be handled in
this step are new variants of the DC implementables [Ravn 1995] introduced next.
An event setX appearing as a subscript of the chop operator or the followed-by
operator (cf. Section2) indicates that an event fromX happens at the corresponding
chop point. Formally:

F ;
X

G== (F ∧ ⌈ct(X) = n⌉) ; (G∧ ⌈ct(X)> n⌉)

F
t

−→
X

G== (F ∧ ⌈ct(X) = n⌉)
t

−→ (G∧ ⌈ct(X)> n⌉)

F
t

−→0
X

G== (F ∧ ⌈ct(X) = n⌉)
t

−→0 (G∧ ⌈ct(X)> n⌉)

The following formula states that while a stability constraint applies, events from
the setX must nothappen:

F
≤t
−→
/X

G== (F ∧ ⌈ct(X) = n⌉)
≤t
−→ (G∧ ⌈ct(X) = n⌉)

F
≤t

−→0
/X

G== (F ∧ ⌈ct(X) = n⌉)
≤t
−→0 (G∧ ⌈ct(X) = n⌉)

The toolf 2u supports the following DC patterns:

(⌈P⌉ ;
X
⌈Q⌉)

t
−→

Y
⌈R⌉ [chop-leads-to]

(⌈P⌉ ;
X
⌈Q⌉)

≤t
−→
/Y

⌈R⌉ [chop-up-to]

⌈Q⌉
t

−→
X

⌈R⌉ [leads-to]

⌈Q⌉
≤t
−→
/Y

⌈R⌉ [up-to]

⌈Q⌉
t

−→0
X

⌈R⌉ [leads-to-initially]

⌈Q⌉
≤t

−→0
/Y

⌈R⌉ [up-to-initially]

Heret ∈ TimeandP,Q,Rare state assertions. The event setsX,Y are optional and
can be omitted.

The tool f 2u implements an algorithm that applies given DC formulae of the
above patterns one after the other to transform the transition system produced in
step (2) into a timed automaton. As an example we show in Fig.9 the pseudo
code for the leads-to pattern. The state assertionsQ andR are represented by the
set of states satisfying these assertions. In step1 the algorithm adds a new clock
to measure the time the transition system stayed in aQ-state without executing
an event fromX. While being in aQ-state this clock must not grow beyondt
because otherwise the DC formula would be violated. Therefore we add in step2

CSP-OZ-DC 23

a corresponding state invariant to allQ-states. The clock needs to be reset when a
Q-state is entered from outside (step3.a) or when an event fromX occurs and the
control stays inQ (step3.b). All outgoing events that do not lead into anR-state
or do not communicate an event fromX must happen before timet has elapsed.
Therefore a corresponding guard is added in step3.c .

Besides enriching the transition system generated by FDR our tool also adds
a timedsupervisorautomaton running in parallel. The supervisor serves two pur-
poses: first, it ensures that – in agreement with the DC semantics defined in Section
3.3 – a non zero time passes between successive events, and second, it hides the
local channels that should not be visible to other processes.

5.2 An example

We illustrate the above verification procedure with the example of a simple cof-
fee vending machine. The CSP-OZ-DC class describing this machine is given in
Fig. 10. Money is represented by the natural numbersN. As global constants we
assume a finite amount ofMoneythat can be handled by theCoffeeMachine, a finite
setCoinof different kinds of coins that can be inserted into theCoffeeMachine, and
a certainprice for a cup of coffee. These assumption can be made more precisein
a concrete application.

The automaton has five channels to communicate with its customer. The chan-
nel in is used by the customer to insert a coin. It takes the value of the coin as
parameter. Similarly anout event is generated by the machine when a coin is re-
turned. The other channels have no parameters and representthe events that the
user presses the startbutton, gets acup, and gets thecoffee. The CSP part ensures
that the events occur in correct order. First it accepts someincoming coins until the
button is pressed. The external choice ensures that the processDrink is only called
when user presses the button. When this happens the processDrink will signal the
cupevent, thecoffeeevent, and continue with the processReturn. This process will
return coins until it is finished and then go back to themain process.

Pattern: ⌈Q⌉
t

−→
X

⌈R⌉

1. Introduce new clock c
2. To all states s ∈ Q add invariant c ≤ t
3. For each transition tr : s

ev
−→ s′ do:

a. if s 6∈ Q, s′ ∈ Q
add reset c := 0 to tr

b. if s ∈ Q, s′ ∈ Q, ev∈ X
add reset c := 0 to tr

c. if s ∈ Q, (s′ 6∈ R ∨ ev 6∈ X)
add guard c < t to tr

Fig. 9: Algorithm for the leads-to pattern

24 J. HOENICKE, E.-R. OLDEROG

Money: FN
Coin : FN
price : N

CoffeeMachine
chan in : [coin? :Coin]
chan out : [coin! : Coin]
chan button,cup,coffee
local chan finished

main
c
= in?x→ main ✷ Drink

Drink
c
= button→ cup→ coffee→ Return

Return
c
= out?y→ Return✷ finished→ main

m : Money

com button
∆(m)

m≥ price
m′ = m−price

com finished
∆()

m= 0

Init
m= 0

com in
∆(m)
coin? :Coin

m′ = m+coin?

com out
∆(m)
coin! : Coin

m′ = m−coin!

(⌈true⌉ ;
cup

⌈en(coffee)⌉)
≤2
−→ ⌈en(coffee)⌉

⌈¬ (en(button) ∨ en(in))⌉
15
−→

finished
⌈true⌉

Fig. 10: Coffee vending machine

The CSP process does not care how much money was entered or returned, as
this is better done in the OZ part. The only changeable data inthis machine is the
amountm of money that was inserted by the customer. It is initializedto zero by
theInit schema. When a coin is inserted the valuem increases by the value of that
coin as specified by thecom in schema. Note that this schema is not enabled when
the new valuem′ would exceed the maximum of the setMoney. The machine will
then refuse to take any more money.

CSP-OZ-DC 25

The communication schema for thebuttonevent checks that enough money has
been inserted and reducesm according to the price of the coffee. As long as not
enough money has been inserted it will block thebutton event. The valuem is
also reduced when a coin is returned to the customer. Sincecoin! is an output
parameter, its value is nondeterministically chosen by theZ schema as long as it
does not exceedm. Again the schema refuses theout event whenm is zero as it
cannot be further reduced. The last schemacom finishedchecks whetherm is zero.

Last but not least the class contains two timing constraints. The first constraint
ensures that after thecupevent it takes at least two seconds before thecoffeeevent
happens. This is expressed by thechop-up-topattern introduced earlier. After the
cup event the coffee event is enabled and formula requires that it stays enabled for
at least two seconds. The expanded form of this constraint is

(⌈ct(cup) = n⌉; ⌈ct(cup) > n∧ en(coffee)⌉)
≤2
−→ ⌈en(coffee)⌉ .

The second timing constraint ensures that the time intervalin which the automaton
is not responding is limited by 15 seconds. The automaton is responsive when it is
ready to accept either a coin or a button can be pressed. The other events are not
generated by the customer, but instead are driving actuators of the machine. The
formula is a normal implementable for progress.

5.3 Applying the transformation steps

We now apply the four transformation steps to the CSP-OZ-DC specification in
Fig. 10. The result of the manual step (1) is shown in Fig.11. It shows the FDR-
CSP specification using the input language for the FDR model-checker and repre-
senting the CSP-OZ part of the vending machine in Fig.10. The constant decla-
rations have now been instantiated. To keep the example small we restricted the
maximum value ofMoneyto 40, the setCoin to {10,20}, and fixed theprice at
20. The channel declaration and the CSP part are taken without modification. The
OZ part is given as process that takes the complete state, here m, as a parameter.
The CSP and the OZ part are then put in parallel synchronizingover their common
alphabet.

The next two steps are performed automatically by our tool. In step (2) it uses
the FDR model-checker to create a compact finite transition system from the spec-
ification of Fig.11. The result is displayed in Fig.12. On the left-hand side are the
states where the CSP part is still in its main process and the customer can insert
money or press the button. The different nodes represent thedifferent amounts of
inserted money as indicated by the values ofm in the graph. Note that the events
which are blocked by the OZ part do not occur in the diagram. For example, the
bottom most node, which represents the state wherem has reached its maximum
of 40, does not allow anyin events. After the button is pressed the cup and coffee
events are signalled and depending on the amount of insertedmoney the corre-
sponding change is returned.

In the FDR model there is one state with an internal choice. Inthe diagram
this is represented by labelling the node with two minimal acceptance sets. This

26 J. HOENICKE, E.-R. OLDEROG

-- Constants
Money = {0..40}
Coin = {10,20}
price = 20

-- Channels
channel in : Coin
channel out : Coin
channel button, coffee, cup, finished

-- Class CoffeeMachine
CoffeeMachine =

let
-- CSP part
main = in?x -> main [] Drink
Drink = button -> cup -> coffee -> Return
Return = out?y -> Return [] finished -> main

-- OZ part
OZPart(m) =

([] coin : {x| x<- Coin, member(m + x, Money)} @
in.coin -> OZPart(m + coin))

[] (let ReturnCoins = {x| x<- Coin, member(m - x, Money)}
within ReturnCoins != {} & -- Pre(out)

|˜| coin : ReturnCoins @
out.coin -> OZPart(m - coin))

[] m >= price & -- Pre(button)
button -> OZPart(m - price)

[] m == 0 & -- Pre(finished)
finished -> OZPart(m)

within -- Put CSP and OZ part in parallel
main [| {| in, out, button, finished |} |] OZPart(0)

Fig. 11: FDR code for the Coffee Vending Machine

node represents the state where the customer inserts 40 and gets 20 back. The
machine can choose whether it returns a 20 coin or a 10 coin (and a second 10
coin later). Semantically, each acceptance set representsa state of its own in which
the automaton will only accept events from this set. By the closure properties of
acceptance sets, there is – besides the minimal sets – also the full set containing all
outgoing events as well as some intermediate sets that lie between the full set and
a minimal set. For simplicity these sets are omitted from thediagram.

Since a timed automaton does not have the notion of acceptance sets, our tool

CSP-OZ-DC 27

m= 0

m= 10
m= 20

m= 30

m= 40

m= 0

m= 10

m= 20

m= 0

m= 10

m= 20

m= 0

m= 10

m= 20{out.10},{out.20}

in.10 in.20
in.10

in.20
in.10

in.20
in.10

button

button

button

cup

cup

cup

coffee

coffee

coffee

out.10

out.20

out.10

finished

Fig. 12: Automaton generated by FDR

out.20

out.10

coffee

{out.10},{out.20}

out.20

out.10

coffee

Fig. 13: Splitting nodes with more than one acceptance set

transforms it to make those sets more explicit. Every state having more than one
acceptance set is split, so that each set belongs to exactly one state. The ingoing
and outgoing transitions are copied as well. The next step isto remove outgoing
transitions labelled with events that are not in the acceptance set. Afterwards the
acceptance set of each state describes exactly the outgoingtransitions of this state.
This transformation process is illustrated in Fig.13.

In step (3) the DC formulae are applied one after the other. For each DC formula
a new clock is introduced and new guards and resets are added to the transitions.
The resulting UPPAAL automaton is given in Fig.14. In our example two clocks
c1, c2 were introduced, one for each DC formula. The clockc1 measures the sta-
bility time for the first requirement. When acupevent is seen thecoffeetransition

28 J. HOENICKE, E.-R. OLDEROG

qinit
 c_event <= 0

q0_0__xq1_0__xq2_0__xq3_0__xq4_0__xq5_0__x

 c2 <= 15

q6_0__1

 c2 <= 15

q7_0__x

 c2 <= 15

q8_0__x

 c2 <= 15

q9_0__x

 c2 <= 15

q10_0__1

 c2 <= 15

q11_0__x

 c2 <= 15

q12_0__1

 c2 <= 15

q13_0__x

 c2 <= 15

q13_1__x

 c2 <= 15

q13_2__x

 c2 <= 15

z_in_dot_20?

z_in_dot_10?

c2 := 0

z_button?

z_in_dot_20?

z_in_dot_10?

c2 := 0

z_button?

z_in_dot_20?

z_in_dot_10?

z_in_dot_10?

c2 := 0

z_button?

c2 < 15

c1 := 0

z_cup?
c1 >= 2, c2 < 15
z_coffee?

c2 < 15
z_out_dot_10?

finished?

c2 < 15

c1 := 0

z_cup?

c1 >= 2, c2 < 15
z_coffee?

c2 < 15

c1 := 0

z_cup?

c1 >= 2, c2 < 15
z_coffee?

c1 >= 2, c2 < 15
z_coffee?

c1 >= 2, c2 < 15
z_coffee?

c2 < 15
z_out_dot_20?

c2 < 15
z_out_dot_20?

c2 < 15
z_out_dot_10?

c2 < 15
z_out_dot_10?

Fig. 14: UPPAAL Model of our CSP-OZ-DC class

should stay enabled for two seconds. The clockc1 is reset at all transitions that
communicate thecupevent and on the nextcoffeetransition it is checked that the
stability time has elapsed.

In general the algorithm first determines the set of states inwhich thecoffee
event is enabled. For each transition entering this set via acup transition the clock
c1 is reset and at each transition leaving the set the clock value is compared with
2. If there are transitions entering the state set without going through thecupevent
another copy of these states is created and the constraint isnot checked for this
copy.

For the progress constraint in the second formula the algorithm outlined in Fig.9
is executed. First the clockc2 is added to the automaton. All states satisfying the
condition¬ (en(in) ∨ en(button)) are annotated with the invariantc2 ≤ 15. All
transitions that enter this set of states reset the clock. Finally all transitions from
this set except for thefinishedtransition are annotated with the guardc2< 15.

The state with the double circle represents the starting state of the UPPAAL
automaton. Its state invariantc event≤ 0 ensures that it will be left immediately
to the real starting state of the FDR automaton. This construct is necessary when
the real starting state is split as shown in Fig.13 because UPPAAL needs a single
starting state.

CSP-OZ-DC 29

button_z_CoffeeMachine

coffee_complete

cup_complete

coffee_z_CoffeeMachine

finished_complete
loop

in_dot_20_complete

out_dot_20_complete

out_dot_10_complete

in_dot_10_complete

button_complete

c_event > 0
z_in_dot_20!
c_event := 0

c_event > 0
z_in_dot_10!
c_event := 0

c_event > 0
button?
c_event := 0

z_button!

c_event > 0
z_cup!
c_event := 0
c_event > 0
coffee?
c_event := 0

z_coffee!

c_event > 0
z_finished!
c_event := 0

c_event > 0
z_out_dot_20!
c_event := 0

c_event > 0
z_out_dot_10!
c_event := 0

Fig. 15: Supervisor timed automaton

5.4 Model-Checking

As step (4) we consider the following real-time property of the vending machine:
after pressing thebutton the customer will wait no longer thant seconds for the
coffee. We wish to determine the exact value oft experimentally using UPPAAL.

The customer is represented by a small timed automatonTestwith a clockc waiting
as shown in Fig.16. It can be in one of two states, eitheridle or waiting for coffee.
When the customer presses thebuttonit changes to thewaitingstate and resets the
clock c waiting. This clock is used to measure the waiting time. When it gets the
coffeeit changes back toidle again.

The test automaton operates in parallel with the coffee machine as given in
Fig. 14 and asupervisorautomaton displayed in Fig.15. The supervisor is the
link between these two automata; it also handles the events not consumed by the
test automaton. The supervisor starts in the double circledcenter state. When some
event occurs one of the outer states annotated withC is entered. In UPPAAL this
annotation marks so-calledcommittedstates that must be left immediately. Their
purpose is to provide more information for the verification process. For instance,
the external eventbutton causes an internal eventz button to occur without any
time passing in between. Another task of the supervisor is toensure our condition
that events cannot happen simultaneously (cf. subsection3.3). To this end, it uses
the clockc eventto check that time has passed (c event> 0) before the next event
occurs, and resets this clock after each event.

30 J. HOENICKE, E.-R. OLDEROG

idle waiting

button!,c waiting := 0

coffee!

Fig. 16: Automaton representing a customer testing the behaviour

Number Max. value Number of Step (2) Step (3) Step (4)
of coins of m states

2 40 16 0.3 6.9 < 0.1
6 100 741 1.7 30.3 10.5
8 200 1822 3.9 180.6 62.1
8 400 4203 9.8 848.3 369.6

Fig. 17: Verification time (in seconds).

The whole system can be loaded into UPPAAL and the following property can
be checked. It asserts that the customer is never waiting forhis coffee for more
thant seconds.

Propt ⇔ A ✷ Test.idle∨ c waiting≤ t

UPPAAL immediately returns an answer. It turns out that fort = 15 the property
is satisfied, for smaller numbers it is not.

5.5 Experimental Results

The table in Fig.17 gives some timings for the steps outlined at the start of this
section. The times were measured on an UltraSPARC-II with 296 MHz. Step (2),
which involves running FDR, is quite fast. Most time is spentin step (3), which is
the addition of clocks to the automaton. It should be noted that our program has
not been optimized.

We can easily change the OZ part to model systems of differentsize. The first
line in the table is for the timed automaton shown in Fig.14. Consider now larger
systems with more coins and largerMoneysets. As shown in Fig.17, this yields au-
tomata with many more states. The tool scales better than quadratic to the number
of states.

6. Conclusion

In the introduction we put forward guidelines for a good combination of specifi-
cation techniques. The case study of the railway crossing was intended to show
how the different aspects of the system can be specified conveniently in the dedi-
cated specifications techniques for processes, data and time. The semantics of the
combination was based on the principles of parallel composition and conjunction.
This implied refinement compositionality and led us to reusetools and verification

CSP-OZ-DC 31

methods for a partially automatic verification. Another interesting consequence of
our semantic integration of CSP, Object-Z and DC is that the representation of the
individual specification techniques may be freely exchanged. For example, we may
useconstraint diagrams[Dietz 1996] to represent the DC formulas graphically and
link to other development processes [Dierks and Tapken 2000].

Related work.The main idea of CSP-OZ-DC has been to combine three well-
researched specification techniques in a constraint-oriented style. Closest to our ap-
proach to semantic integration is [Smith 2002] where Real-Time Object-Z [Smith
and Hayes 1999] is integrated with CSP. The idea is that CSP operators serve to
combineclasses of Real-Time Object-Z, but in contrast to CSP-OZ-DCthere is
no CSP-partinsideof classes. As we have seen in the examples, the CSP part is
convenient for specifying sequencing constraints on the communications events.

In Real-Time Object-Z the timing properties are specified inan interval-based
set-theoretic notation [Fidgeet al.1998]. We also use an interval-based approach
but in terms of the Duration Calculus [see Zhouet al. 1991, Hansen and Zhou
1997]. To ensure that the CSP operators are well defined on Real-Time Object-Z
classes, anF D-semantics for these classes based on timed events is definedin
[Smith 2002].

Another related work is TCOZ, a combination of Timed CSP [Davies and Schneider
1995] with Object-Z due to Mahony and Dong [1998, 1999]. As inCSP-OZ-DC
the CSP operators are allowed both inside and outside of classes. However, here
Timed CSP with its operational constructs like waits, timeouts and interrupts is
used. By contrast, CSP-OZ-DC uses the predicates of DC to specify time depen-
dencies between communications.

Verification.This paper goes beyond the above approaches by addressing verifi-
cation. We have exploited the transformational semantics of CSP-OZ-DC for a par-
tially automatic verification of timing properties of combined specifications. The
core of the method is a novel, systematic transformation of CSP-OZ-DC classes
into timed automata that can be model-checked by the UPPAAL tool. This poses
the question whether the timed automata semantics producedby the algorithm of
Section5 is equivalentto the DC semantics of Section3. A proof of such an equiv-
alence is left for future work. However, similar equivalence proofs between timed
automata and DC semantics are given in [Dierkset al.1998].

Perspectives.Automatic verification works only for finite data types in theOZ
part and certain patterns of timing constraints in the DC part. For infinite data
and more general DC formula one will need interactive verification techniques. In
a separate (yet unpublished) case study we have applied the theorem prover KIV
[Balser et al. 1999] to prove refinement of the OZ parts in a high-level specifi-
cation by an implementation-level specification of a train controller for the radio
controlled railway crossing.

In this paper the DC part restricts only the timing of the communications. In
general one would also like to restrict the timed behaviour of the class state. To
this end, we pursue the idea that the current state of the OZ part is made observable
by a special communication.

32 J. HOENICKE, E.-R. OLDEROG

Acknowledgements

We would like to thank Christian Ohler, a research student atour group, for imple-
menting the algorithm transforming FDR transition systemsand DC patterns into
UPPAAL timed automata. Detailed comments of the referees helped to improve
the presentation.

References

BALSER, M., REIF, W., SCHELLHORN, G.,AND STENZEL, K. 1999. KIV 3.0 for Provably Correct
Systems. InApplied Formal Methods – FM-Trends 98, Volume 1641 ofLNCS. Springer.

BENGTSSON, J., LARSEN, K.G., LARSSON, F., PETTERSSON, P.,AND Y I , WANG. 1997. Uppaal
– a Tool Suite for Automatic Verification of Real-Time Systems. In Hybrid Systems III –
Verification and Control, Volume 1066 ofLNCS. Springer, 232–243.

BOOCH, G., RUMBAUGH , J., AND JACOBSON, I. 1999. The Unified Modeling Language User
Guide. Object Technology Series. Addison Wesley.

DAVIES, J. AND SCHNEIDER, S. 1995. A brief history of Timed CSP.Theoretical Computer
Science 138, 243–271.

DE NICOLA , R. AND HENNESSY, M. 1983. Testing equivalences of processes.Theoretical Com-
puter Science 34, 83–133.

DIERKS, H. 2001. PLC-Automata: A New Class of Implementable Real-Time Automata.Theoret-
ical Computer Science 253, 1, 61–93.

DIERKS, H., FEHNKER, A., MADER, A., AND VAANDRAGER, F.W. 1998. Operational and
Logical Semantics for Polling Real-Time Systems. InFTRTFT’98, Volume 1486 ofLNCS.
Springer, 29–40.

DIERKS, H. AND TAPKEN, J. 2000. Modelling and Verifying of a ‘Cash Point Service’ Using
MOBY/PLC. Formal Aspects of Computing 12, 220–221.

DIETZ, C. 1996. Graphical formalization of real-time requirements. InFormal Techniques in Real-
Time and Fault-Tolerant Systems, Volume 1135 ofLNCS. Springer, 366–385.

FIDGE, C.J., HAYES, I.J., MARTIN , A.P., AND WABENHORST, A.K. 1998. A Set-Theoretic
Model for Real-Time Specification and Reasoning. InMathematics of Program Construction,
Volume 1422 ofLNCS. Springer, 188–206.

FISCHER, C. 1997. CSP-OZ: A Combination of Object-Z and CSP. InFormal Methods for Open
Object-Based Distributed Systems (FMOODS’97), Volume 2. Chapman & Hall, 423–438.

FISCHER, C. 2000.Combination and Implementation of Processes and Data: FromCSP-OZ to Java.
PhD thesis, Bericht Nr. 2/2000, University of Oldenburg.

FISCHER, C. AND WEHRHEIM, H. 1999. Model-checking CSP-OZ specifications with FDR. In
Integrated Formal Methods (IFM 99). Springer, 315–334.

FORMAL SYSTEMS (EUROPE) LTD. 1995.Failures-Divergence Refinement: FDR 2.
HANSEN, M.R. AND ZHOU, C. 1997. Duration Calculus: Logical Foundations.Formal Aspects of

Computing 9, 283–330.
HE, J., HOARE, C.A.R., FRÄNZLE , M., MÜLLER-OLM , M., OLDEROG, E.-R., SCHENKE, M.,

HANSEN, M.R., RAVN , A.P., AND RISCHEL, H. 1994. Provably correct systems. InFormal
Techniques in Real-Time and Fault Tolerant Systems, Volume 863 ofLNCS. Springer, 288–
335.

HEILMANN , S. 1999.Proof Support for Duration Calculus. PhD thesis, Dept. Inform. Technology,
Tech. Univ. Denmark.

HENNESSY, M. 1988.Algebraic Theory of Processes. MIT Press.
HOARE, C.A.R. 1978. Communicating Sequential Processes.CACM 21, 666–677.
HOARE, C.A.R. 1985.Communicating Sequential Processes. Prentice Hall.
HOARE, C.A.R.AND HE, J. 1997.Unifying Theories of Programming. Prentice Hall.
HOENICKE, J. AND OLDEROG, E.-R. 2002. Combining Specification Techniques for Processes,

Data and Time. InIntegrated Formal Methods (IFM 2002), Volume 2335 ofLNCS. Springer,
245–266.

CSP-OZ-DC 33

KOLYANG. 1997. HOL-Z — An Integrated Formal Support Environment for Z in Isabelle/HOL.
PhD thesis, Fachbereich Math. und Informatik, Univ. Bremen.

LUENBERGER, D.G. 1979. Introduction to Dynamic Systems. Theory, Models & Applications.
Wiley.

MAHONY, B.P. AND DONG, J.S. 1998. Blending Object-Z and Timed CSP: an introduction to
TCOZ. InThe 20th International Conference on Software Engineering(ICSE’98). IEEE Com-
puter Society Press, 95–104.

MAHONY, B.P. AND DONG, J.S. 1999. Sensors and Actuators in TCOZ. InFM’99 – Formal
Methods, Volume 1709 ofLNCS. Springer, 1166–1185.

MOSZKOWSKI, B. 1985. A temporal logic for multi-level reasoning about hardware. IEEE Com-
puter 18, 2, 10–19.

MOSZKOWSKI, B. 1986.Executing Temporal Logic Programs. Cambridge Univ. Press.
OLDEROG, E.-R., RAVN , A. P., AND SKAKKEBÆK , J. U. 1996. Refining system requirements to

program specifications. InFormal Methods for Real-Time Computing. Wiley, 107–134.
RAVN , A.P. 1995. Design of Embedded Real-Time Computing Systems. Tech. Report ID-TR:

1995-170, Tech. Univ. Denmark.
RAVN , A.P., RISCHEL, H., AND HANSEN, K.M. 1993. Specifying and verifying requirements of

real-time systems.IEEE Trans. Software Engineering 19, 1, 41–55.
ROSCOE, A.W. 1994. Model-checking CSP. InA Classical Mind — Essays in Honour of

C.A.R.Hoare. Prentice-Hall, 353–378.
ROSCOE, A.W. 1997.The Theory and Practice of Concurrency. Prentice-Hall.
SAALTINK , M. 1997. The Z/EVES system. InZUM’97 , Volume 1212 ofLNCS. Springer, 72–88.
SCHENKE, M. AND OLDEROG, E.-R. 1999. Transformational design of real-time systems– Part 1:

from requirements to program specifications.Acta Inform. 36, 1–65.
SELIC, B. AND RUMBAUGH , J. 1998. Using UML for Modeling Complex Real-Time Systems.

Tech. report, ObjecTime.
SKAKKEBÆK , J.U. 1994.A Verification Assistent for a Real-Time Logic. PhD thesis, Dept. Comp.

Sci., Tech. Univ. Denmark.
SMITH , G. 2000.The Object-Z Specification Language. Kluwer Academic Publisher.
SMITH , G. 2002. An Integration of Real-Time Object-Z and CSP for Specifying Concurrent Real-

Time Systems. InIntegrated Formal Methods (IFM 2002), Volume 2335 ofLNCS. Springer,
267–285.

SMITH , G. AND HAYES, I. 1999. Towards Real-Time Object-Z. InIntegrated Formal Methods
(IFM 99). Springer, 49–65.

SMITH , G., KAMM ÜLLER, F., AND SANTEN, T. 2002. Encoding Object-Z in Isabelle/HOL. InZB
2002: Formal Specification and Development in Z and B, Volume 2272 ofLNCS. Springer,
82–99.

SPIVEY, J.M. 1992.The Z Notation: A Reference Manual, 2nd edition. Prentice-Hall International
Series in Computer Science.

TAPKEN, J. 2001. Model-Checking of Duration Calculus Specifications. PhD thesis, Bericht Nr.
3/2001, University of Oldenburg.

WOODCOCK, J.AND DAVIES, J. 1996.Using Z — Specification, Refinement, and Proof. Prentice-
Hall.

ZHOU, C., HOARE, C.A.R.,AND RAVN , A.P. 1991. A calculus of durations.Information Process-
ing Letters 40, 5, 269–276.

